SMILETrack——ByteTrack与外观特征的融合实现高效的多目标跟踪方法

SMILETrack——ByteTrack与外观特征的融合实现高效的多目标跟踪方法

概述

ByteTrack在多目标跟踪领域取得了显著成就,但依赖运动信息(IoU)进行关联的机制存在局限性。为了弥补这一不足,SMILETrack提出一种集成了外观特征的最先进的多目标跟踪(SoTA)模型。
在多目标跟踪的两大类别中,单独检测与嵌入模型(SDE)和联合检测与嵌入模型(JDE)各有优势与挑战。SDE方法依赖于独立的检测器,并通过关联每一帧的检测结果来实现跟踪,这种方法因其允许对检测和跟踪模型进行独立优化而通常更为精确。然而,使用独立模型也带来了实时性方面的挑战。相反,JDE方法通过在单一模型中同时进行检测和跟踪,理论上能够提供实时估计,但这种方法由于竞争性学习的存在,往往会导致准确性的下降。SMILETrack模型属于SDE类别,它继承了ByteTrack仅使用运动信息的关联策略,并进一步引入了基于注意力机制的外观特征提取器,这一改进在MOT17和MOT20数据集上取得了SoTA的成果。

SMILETrack的主要贡献可以归纳为以下几点:

  1. 引入了相似性学习模块(SLM),这是一种外观特征提取器,它利用注意力机制明确区分检测到的个体,从而提高了跟踪的准确性。1. 针对ByteTrack在鲁棒性方面的不足,我们提出了相似性匹配级联(SMC),这是一种结合了外观信息和运动信息的关联策略,旨在增强模型的鲁棒性。1. 设计了一种门函数来调节外观和运动信息的权重,使得模型在面对遮挡和运动模糊时能够进行更为鲁棒的关联。
    论文地址:https://arxiv.org/abs/2211.08824
    源码地址:https://github.com/WWangYuHsiang/SMILEtrack
    🔥计算机视觉、图像处理、毕业辅导、作业帮
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackie_AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值