目标追踪StrongSORT——基于DeepSORT重大升级提高多目标跟踪的准确性和鲁棒性
1、概述
1.1 DeepSORT
DeepSORT算法是在SORT基础上发展起来的一种多目标跟踪算法。SORT算法结合了目标检测器和跟踪器,其中跟踪器的核心是卡尔曼滤波和匈牙利算法。卡尔曼滤波用于预测目标在下一帧的位置和状态,而匈牙利算法则用于将预测状态与实际检测结果进行最佳匹配。这种方法在目标没有被遮挡或丢失时表现良好,但如果目标因为某些原因(如遮挡)在一帧中未被检测到,卡尔曼滤波的预测可能会失败,导致跟踪失败。
DeepSORT算法为了解决这个问题,引入了深度学习中的重识别技术。它不仅关注目标的运动信息,还利用目标的外观特征来增强跟踪的准确性。DeepSORT通过深度学习模型提取目标的外观特征,并将这些特征表示为低维向量。在每帧的检测和跟踪过程中,DeepSORT都会提取当前帧中目标的外观特征,并与之前存储的特征进行比较,以此来判断目标是否为同一物体。
这种方法的优势在于,即使在目标暂时从视野中消失或被遮挡的情况下,DeepSORT也能够通过外观特征的匹配来维持跟踪的连续性。外观特征的引入使得DeepSORT在处理遮挡、相似目标的分辨以及目标再出现时的身份恢复等方面表现得更加鲁棒。
🔥计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!
✍🏻作者简介:机器学习,深度学习,卷积神经网络处理,图像处理
🚀B站项目实战:https://space.bilibili.com/364224477
😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+
🤵♂代做需求:@个人主页
1.2 StrongSORT
StrongSORT它在DeepSORT的基础上进行了一系列的改进,以提高跟踪的准确性和性能。改时以下的几个地方:
- BoT(Bag of Tricks): 改进了外观特征提取器,它使用深度学习技术来提取目标的视觉特征,这些特征对于区分和识别不同的目标至关重要。1. EMA(Exponential Moving Average): 通过引入惯性项来平滑特征更新,EMA有助于减少噪声和异常值的影响,使得跟踪更加稳定。1. NSA(Neural Network-based Appearance): 这是一种用于非线性运动的卡尔曼滤波器,它通过神经网络来预测目标的状态,以适应更复杂的运动模式。1. MC(Motion Compensation): 包括运动信息的成本矩阵,这有助于在匹配过程中更好地考虑目标的运动信息,提高匹配的准确性。1. ECC(External Camera Calibration): 摄像机运动更正,它允许算法校正摄像机的外部参数,从而提高跟踪的准确性。1. woC(Without Cascading): 不采用级联算法,这可能意味着算法避免了在不同阶段使用不同复杂度的检测器,从而提高了处理速度。
StrongSORT++是StrongSORT的一个变体,它进一步引入了:
StrongSORT通过在特征提取、运动信息处理和成本矩阵计算等方面的改进,提高了多目标跟踪的性能。而StrongSORT++则通过引入AFLink和GSI技术,进一步优化了跟踪的准确性和鲁棒性。这些改进使得StrongSORT能够在复杂的场景中更有效地处理遮挡、目标丢失和重新出现等问题,从而实现最先进的跟踪性能(SOTA)。
StrongSORT与其说从根本上改变了结构,不如说是改进了跟踪所需的特征提取、运动信息和成本矩阵的处理。StrongSORT++将AFLink(离线处理)和GSI插值(后处理)应用于改进的StrongSORT,是一个更加精确的模型。MOT17和MOT20的准确性比较,这表明了StrongSORT的优越性。