马尔可夫奖励过程(MRP):强化学习中的基础概念
在强化学习中,马尔可夫奖励过程(Markov Reward Process, MRP)是一个重要的基础概念。它结合了马尔可夫链(Markov Chain)和奖励机制,能够描述一个系统在不同状态之间的转移和相应的奖励。本文将深入浅出地介绍MRP的定义和基本性质,并结合实例帮助读者更好地理解这一概念。
什么是马尔可夫奖励过程(MRP)?
MRP可以看作是带有奖励的马尔可夫链。它由以下几个要素组成:
- 状态集(States, S):一个有限的状态集合,记为 ( s \in S )。
- 状态转移概率(Transition Probabilities, P):描述系统在不同状态之间的转移概率。具体来说, ( P(st+1 = s’|st = s) ) 表示在时刻 ( t ) 系统处于状态 ( s ) 时,在时刻 ( t+1 ) 转移到状态 ( s’ ) 的概率。
- 奖励函数(Reward Function, R):描述在每个状态 ( s ) 处所能获得的期望奖励。记为 ( R(st = s) = E[rt|st = s] ),表示在时刻 ( t ) 系统处于状态 ( s ) 时的期望奖励。
- 折扣因子(Discount Factor, γ):一个介于0和1之间的数,表示未来奖励的现值权重。
MRP的定义
MRP没有动作的概念,因此智能体在每个状态下只能被动地按照状态转移概率进行状态转移。MRP的定义可以简化为:
[ \text{MRP} = (S, P, R, \gamma) ]
其中:
- ( S ) 是状态集。
- ( P ) 是状态转移概率矩阵。
- ( R ) 是奖励函数,可以表示为一个向量。