策略评估方法详解
在强化学习(Reinforcement Learning)中,策略评估(Policy Evaluation)是一个重要的过程,用于估算在特定策略下,智能体在不同状态的预期回报。当我们没有访问真实的马尔可夫决策过程(MDP)模型时,我们需要采用一些策略评估的方法,如蒙特卡罗策略评估(Monte Carlo Policy Evaluation)、时间差分(Temporal Difference, TD)、动态规划的确定性等效(Certainty Equivalence with Dynamic Programming)以及批量策略评估(Batch Policy Evaluation)。本文将深入浅出地介绍这些方法,帮助读者理解和应用它们。
策略评估简介
策略评估的目标是估算在特定策略下,智能体从某一状态开始所能获得的预期累积奖励。这一过程在没有真实MDP模型的情况下尤为重要,因为我们无法直接计算出预期回报。
蒙特卡罗策略评估
什么是蒙特卡罗策略评估?
蒙特卡罗策略评估通过生成大量样本路径,来估算在特定策略下的状态值函数。这些样本路径是在给定策略下,从初始状态开始一直到终止状态的完整序列。
方法步骤
- 生成样本路径:在给定策略下,生成多条样本路径。
- 计算回报:对于每条样本路径,从每个状态开始,计算到达终止状态的总回报。
- 平均回报:对于每个状态,计算其在所有样本路径中的平均回报,即为该状态的估计值函数。
优点与缺点
优点:
- 简单直观,容易实现。
- 无需了解环境的动态模型。
缺点: