⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要10分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我
基于Bayes的数据预测
1. 贝叶斯统计方法
贝叶斯统计方法是基于贝叶斯定理而发展起来用于系统地阐述和解决统计问题的方法。贝叶斯统计方法不同于经典统计方法。经典统计方法只利用两种信息:一是模型信息,二是样本信息。然而贝叶斯统计方法的核心是贝叶斯公式。
1963年,贝叶斯提出了贝叶斯公式:
事件B 的发生总是与 A1,A2 ,……, An 之一同时发生。
贝叶斯公式是在观察到事件 B 已经发生的条件下,寻找导致 B 发生的每个原因的概率。
贝叶斯学派认为,后验概率分布综合了样本信息 x 及先验概率分布 ,因此抽样的全部目的是完成由先验概率分布到后验概率分布的转换,从而完成对事件 A 认识的改变。此过程如图所示。