⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要10分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我
基于BP神经网络的人脸方向预测
1. BP神经网络基本原理
BP神经网络利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。
BP算法采用的是多层感知器的误差反向传播算法,其基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传输阶段。
误差反传是将输出误差以某种形式通过隐层向输入曾逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,该误差信号即作为修正各单元权值的依据。
信号正向传播与误差反向传播的各层权值的调整是反复进行的,直至网络输出的误差减少到可接受的程度,或是进行到预先设定的学习次数,结构图如图所示。