⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要10分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿❗❗❗知识付费,🈲止白嫖,有需要请后台私信或【文末】个人微信公众号联系我
基于BP神经网络的模型优化预测与MATLAB实现
BP(Back Propagation)神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。本章主要依托BP神经网络进行PID参数整定和数字识别技术研究。
1. BP神经网络模型及其基本原理
BP神经网络结构
BP神经网络模拟生物神经元信号的传递过程,生物神经元信号的传递是通过突触进行的一个复杂过程,而BP神经网络则将生物神经元信号传递过程,简化成一组(或者多组)数字信号通过一定的学习规则而不断更新的过程,这组数字映射到神经网络结构,则为不同神经元之间的连接权重。