【pytorch】conda安装pytorch

Step 1

打开官网:

https://pytorch.org/get-started/locally/

进行选择对应版本:


复制图中命令执行。

Step 2

验证是否安装成功。

执行:

import torch
print(torch.cuda.is_available())
print(torch.cuda.device_count())
print(torch.version.cuda)

输出:

### 安装支持 CUDA 12.6 的 PyTorch 使用 Conda 对于希望利用 NVIDIA 显卡加速计算能力的开发者来说,安装带有 CUDA 支持的 PyTorch 是常见的需求之一。针对 CUDA 12.6 和特定版本的 PyTorch 安装,可以采用如下方法: 通过官方渠道获取适合指定 CUDA 版本的支持软件包是一个明智的选择。然而,在提供的资料中并未直接提及适用于 CUDA 12.6 的具体安装指令[^1]。通常情况下,为了确保兼容性和稳定性,推荐访问 [PyTorch官方网站](https://pytorch.org/) 并根据个人环境配置选择最合适的安装选项。 考虑到这一点,下面给出了一条假设性的命令来指导如何使用 `conda` 安装具有 CUDA 12.6 支持的 PyTorch 及其相关库(请注意实际可用性取决于 Anaconda 仓库更新情况): ```bash conda install pytorch torchvision torchaudio cudatoolkit=12.6 -c pytorch-nightly -c nvidia ``` 这条命令尝试从 `pytorch-nightly` 频道以及 `nvidia` 渠道安装最新构建版的 PyTorch、torchvision 和 torchaudio 库,并指定了 CUDA Toolkit 的版本为 12.6。需要注意的是 `-c pytorch-nightly` 表示使用夜间构建版本,这可能包含了最新的功能改进但也可能存在不稳定因素;如果偏好稳定版本,则应查阅官方文档确认是否有正式发布的对应组合并调整频道至 `-c pytorch` 或其他合适源[^2]。 此外,当遇到大型依赖项如上述提到的情况时,预先下载 `.whl` 文件再执行本地安装也是一种有效策略,特别是网络条件不佳的情况下能够提高成功率[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向 阳 花

感谢大佬支持,本人会继续努力哒

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值