排序算法——堆排序

堆排序是一种基于完全二叉树的排序算法,通过构建大根堆或小根堆来实现排序。它包括建堆、调整堆和堆排序三个步骤。在建堆过程中,时间复杂度为O(n),调整堆的时间复杂度为O(logn),因此总时间复杂度为O(nlogn)。堆排序是不稳定的排序方法,适用于记录数较多的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在介绍堆排序之前我们首先应该弄清楚堆排序可以解决什么问题,答案是显而易见的:排序。说得通俗点儿就是对一组无序的数字进行调整,使其按照从大到小或者从小大到的顺序有序排列。既然知道了堆排序的作用了,那么有的同学就会有疑问了,为什么“排序”前面加了“堆”呢?究竟什么是堆呢?这一节我们就详细了解什么是堆?如何利用堆进行排序?

定义

堆排序定义

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的特点

堆排序的特点是:在排序过程中,将R[l…n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系(参见二叉树的顺序存储结构),在当前无序区中选择关键字最大(或最小)的记录

堆的定义

堆是一棵顺序存储的完全二叉树。所谓完全二叉树即叶节点只能出现在最下层和次下层,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树。

其中每个结点的关键字都不大于其孩子结点的关键字,这样的堆称为小根堆。

其中每个结点的关键字都不小于其孩子结点的关键字,这样的堆称为大根堆。

举例来说,对于n个元素的序列{R0, R1, … , Rn}当且仅当满足下列关系之一时,称之为堆:

  • Ri <= R2i+1 且 Ri <= R2i+2 (小根堆)
  • Ri >= R2i+1 且 Ri >= R2i+2 (大根堆)

其中i=1,2,…,n/2向下取整;

image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辕门骁骑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值