skip gram模型的实现

本文介绍了skip gram模型,从CBOW模型的概念出发,详细阐述了skip gram模型的原理、数学表示以及损失函数。skip gram模型相较于CBOW,虽然训练速度慢但准确性更高。文章还提及了skip gram模型的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CBOW模型的概率表示:

P(A):A发生的概率。

P(A,B):事件A和事件B同时发生的概率,称为联合概率。

P(A|B):在给定事件B的信息后,事件A发生的概率,称为后验概率。

CBOW模型:当给定某个上下文时,输出目标词的概率。

在这里插入图片描述

用数学式来表示给定上下文wt-1和wt+1时目标词为wt的概率:

在这里插入图片描述

交叉熵误差函数公式:yk是神经网络的输出, tk是正确解标签, k表示数据的维数。如果标签为one-hot表示,即tk中只有正确解标签索引为1,其他均为0 。那么式子只计算对应正确解标签的输出的自然对数。

在这里插入图片描述

CBOW 模型的损失函数(一 笔样本数据的损失函数):

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天学点

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值