追求本质和意义的原因

人类为什么需要追求本质和意义?
人类对​​本质​​和​​意义​​的追求,根植于我们的认知结构、生存需求和社会演化。这种需求并非偶然,而是由​​生物学、心理学、哲学​​和​​文化​​共同塑造的深层驱动力。
​​1. 认知需求:理解世界以生存​​
​​(1)大脑的“解释器”机制​​
人类大脑天生寻求​​因果解释​​(如“为什么打雷?”),以减少不确定性并预测未来。
​​进化优势​​:原始人用神话、巫术解释自然现象,以规避危险(如将闪电归因于神怒)。
​​(2)模式识别与简化复杂世界​​
大脑通过​​抽象化​​(如数学、哲学)提炼本质规律,以高效处理信息。
例:牛顿用万有引力定律统一天体与地面运动,取代了繁杂的托勒密本轮模型。
​​2. 心理需求:对抗焦虑与虚无​​
​​(1)存在主义焦虑​​
意识到自身渺小与必死性(“死亡恐惧”),人类需要意义来缓冲虚无感。
​​维克多·弗兰克尔​​:在集中营中发现,赋予生活意义是生存的关键动力。
​​(2)控制感与秩序需求​​
意义提供​​掌控幻觉​​(如宗教的“天命”、科学的“确定性”),减少随机性带来的无助感。
心理学实验:当受试者被剥夺控制感时,会更强烈地寻找虚假模式(如迷信行为)。
​​3. 社会需求:协作与文化的基石​​
​​(1)共享意义促进合作​​
群体通过​​共同叙事​​(如国家、宗教、科学范式)协调行动,超越个体局限。
例:货币的本质是“集体信仰”,而非纸张或金属的物理属性。
​​(2)道德与法律的根基​​
对“人性本质”的探讨(如性善论/性恶论)直接塑造社会规则(如法治 vs. 德治)。
​​4. 哲学与超越性需求:突破有限性​​
​​(1)追求永恒与超越​​
人类渴望突破时空限制,通过​​艺术、科学、信仰​​触及“不朽”。
例:哲学家追求“真理”,艺术家创造“美”,本质上是将瞬间体验转化为永恒价值。
​​(2)自我实现(马斯洛需求顶层)​​
寻找本质和意义是​​人格完整​​的体现,如尼采所说:“知道为何而活的人,几乎能忍受任何生存方式。”

​​为什么“无意义”本身难以忍受?​​
​​神经科学​​:大脑默认模式网络(DMN)在空闲时会自动思考存在性问题,拒绝“无意义”状态。
​​行为学​​:实验显示,若受试者被要求做无意义任务(如反复堆石头),会自发赋予其意义(如“我在建造艺术”)。

追求本质和意义是人类的“生存算法”​​
​​生物层面​​:优化认知效率,增强生存适应性。
​​心理层面​​:提供安全感与目标感,避免精神崩溃。
​​社会层面​​:构建文明协作网络,推动集体进步。
​​超越层面​​:在有限生命中寻找无限价值的出口。
即使科学证明宇宙本质是“无意义”的,人类仍会​​创造意义​​——因为这就是我们存在的方式。

### 强化学习与监督学习的本质区别 #### 定义比较 强化学习是一种通过试错过程来优化决策的方法,其目标是在给定环境中找到一种策略,使得智能体能够最大化累积奖励[^2]。而监督学习则是基于已知输入输出的数据集训练模型,使其能够在新的数据上做出预测或分类[^1]。 #### 数据需求 监督学习依赖于大量标注好的数据集来进行训练,这些数据通常由专家提供标签,因此属于被动学习模式。相比之下,强化学习不需要预先定义的标签集合;相反,它依靠智能体与其环境互动过程中产生的反馈信号——即奖励函数来调整行为[^3]。 #### 学习方式 在监督学习框架下,算法试图最小化预测值与实际值之间差异的成本函数。而在强化学习场景中,则不存在明确的目标变量作为参照物,取而代之的是对未来可能收益的一个估计,并据此不断改进策略以追求长期最优解[^4]。 #### 反馈机制 对于每一个具体样本而言,在传统意义上的监督任务里都会即时得到确切答案用于纠正偏差。然而,在强化情境之下,由于存在延迟效应等原因造成的结果不确定性较高,因而往往只能获得间接且稀疏形式上的评价指标—回报值,这就决定了两者间存在着显著不同的时间维度考量因素[^2]。 #### 应用领域 鉴于各自特点的不同,这两种技术被广泛应用于各自的擅长范围之内。例如图像识别、语音处理等领域更多地采用了监督手段实现精准匹配功能; 而像游戏AI开发、机器人控制等方面则更适合运用到动态规划性质较强的增强型解决方案上去探索未知空间并作出最佳抉择路径设计[^1]。 ```python # 这是一个简单的 Q-learning 实现例子展示如何利用 off-policy 方法更新价值函数。 import numpy as np def q_learning(env, num_episodes=500, alpha=0.8, gamma=0.95, epsilon=0.1): action_size = env.action_space.n state_size = env.observation_space.n q_table = np.zeros([state_size, action_size]) for i_episode in range(num_episodes): state = env.reset() done = False while not done: if np.random.uniform(0, 1) < epsilon: # Exploration with probability ε action = env.action_space.sample() else: # Exploitation otherwise action = np.argmax(q_table[state]) next_state, reward, done, _ = env.step(action) old_value = q_table[state, action] next_max = np.max(q_table[next_state]) new_value = (1 - alpha)*old_value + alpha*(reward + gamma*next_max) q_table[state,action]=new_value state = next_state return q_table ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天学点

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值