pytorch的ImageFolder用法

本文介绍了如何在PyTorch中使用ImageFolder数据集,详细讲解了其构造函数参数、图片组织结构以及如何应用transform进行预处理,包括随机裁剪、翻转和标准化操作。

转载自:pytorch的ImageFolder用法_gbz3300255的博客-CSDN博客​​​​​​

 

torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用。在这里介绍一个会经常使用到的Dataset——ImageFolder。

ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:

ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

它主要有四个参数:

root:在root指定的路径下寻找图片

transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象

target_transform:对label的转换

loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。

图片结构如下所示:

 

from torchvision import transforms as T

import matplotlib.pyplot as plt

from torchvision.datasets import ImageFolder

dataset = ImageFolder('data/dogcat_2/')

# cat文件夹的图片对应label 0,dog对应1

print(dataset.class_to_idx)

# 所有图片的路径和对应的label

print(dataset.imgs)

# 没有任何的transform,所以返回的还是PIL Image对象

#print(dataset[0][1])# 第一维是第几张图,第二维为1返回label

#print(dataset[0][0]) # 为0返回图片数据

plt.imshow(dataset[0][0])

plt.axis('off')

plt.show()

加上transform

normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])

transform = T.Compose([

     T.RandomResizedCrop(224),//将给定图像随机裁剪为不同的大小和宽高比,然后缩放所裁剪得到的图像为制定的大小

                                                             //(即先随机采集,然后对裁剪得到的图像缩放为同一大小)

     T.RandomHorizontalFlip(),

     T.ToTensor(),

     normalize,

])

dataset = ImageFolder('data1/dogcat_2/', transform=transform)

 

# 深度学习中图片数据一般保存成CxHxW,即通道数x图片高x图片宽

#print(dataset[0][0].size())

 

to_img = T.ToPILImage()

# 0.2和0.4是标准差和均值的近似

a=to_img(dataset[0][0]*0.2+0.4)

plt.imshow(a)

plt.axis('off')

plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值