1094 谷歌的招聘——C++实现

本文详细解析了2004年谷歌在硅谷101号公路旁设立的招聘广告谜题,介绍了如何从给定的长数字串中寻找最早的K位连续素数,通过编程实现并提供了代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

1094 谷歌的招聘 (20 分)

2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。

prime.jpg

自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921... 其中粗体标出的 10 位数就是答案。

本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。

输入格式:

输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。

输出格式:

在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出 404。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。

输入样例 1:

20 5
23654987725541023819

输出样例 1:

49877

输入样例 2:

10 3
2468024680

输出样例 2:

404

作者: 陈越

单位: 浙江大学

时间限制: 200 ms

内存限制: 64 MB

代码长度限制: 16 KB


算法

由于输入数据可能达到1000位,因此用string读入。判断的时候依次从下标为0的位置开始读入K位,逐渐往后读到s.length()-K为止。每次将读入的字符转化为数字,并判断是否为素数。但是有一个测试点过不去,扣一分

代码

#include <iostream>
#include <cmath>
#include <string>
using namespace std;
int main(){
	long int L,K,n2,i,j;	cin>>L>>K;
	string s1,s2;	cin>>s1;
	for(i=0;i<=s1.length() -K;i++){
		s2=s1.substr(i,K);
		n2=stoi(s2);
		for(j=2;j<=int(sqrt(n2));j++){
			if(n2%j==0)	break;
		}
		if(j==int(sqrt(n2))+1){
			cout<<s2;	//n2是素数 
			break;
		}
	}
	if(i==s1.length() -K+1)	cout<<"404";
	return 0;
}
#include <iostream>
#include <cmath>
#include <string>
using namespace std;
int main(){
	long int L,K,n2,i,j;	cin>>L>>K;
	string s1,s2;	cin>>s1;
	for(i=0;i<=s1.length() -K;i++){
		s2=s1.substr(i,K);
		n2=stoi(s2);
		if(n2==1||n2==0)	continue; 
		for(j=2;j<=int(sqrt(n2));j++){
			if(n2%j==0)	break;
		}
		if(j==int(sqrt(n2))+1){
			cout<<s2;	//n2是素数 
			break;
		}
	}
	if(i==s1.length() -K+1)	cout<<"404";
	return 0;
}

 

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吉大秦少游

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值