[Spark基础]-- spark并行度和partion联系

本文探讨了如何提高Spark并行度,包括通过reduce参数、partitionBy和设置SparkContext.textFile的num参数。并行度受partition、节点数量、CPU核心数等因素影响。深入讲解了File、Block、Split、Task、Partition、RDD等概念及其相互关系,指出InputSplit与Task一对一,Task并发度等于Executor数乘以每个Executor的核数。在数据读取阶段,partition数目基于InputSplit,Map阶段保持不变,Reduce阶段如repartition操作可改变分区数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题

1、怎样提高并行度?

几种方式:(1)reduce时,输入参数(int)   (2)partitionBy()输入分区数  (3)SparkContext.textFile(path,num)

2、什么情况下需要提高并行度?

(1).partition的个数是split size决定的,spark的底层还是用的hadoop的fileformat,当你制定了一个可以切分的format,他就会按照splitsize去切partition,这个决定了任务会被分成多少份。

(2).节点个数跟cpu的核数决定了你能起多少实例,就是资源池。

(3).如果你partition的数量多,能起实例的资源也多,那自然并发度就多,如果你partition数量少,资源很多,它也不会有很多并发,如果你partition的数量很多,但是资源少,那么并发也不大,他会算完一批再继续起下一批

 

 

二、几个概念和关系

Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数、Executor数、core数目的关系


输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oo寻梦in记

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值