YoloV8改进策略:卷积篇|Kan行天下之小波Kan

摘要

Wav-KAN是一种利用Wavelet Kolmogorov-Arnold Networks(Wav-KAN)框架的神经网络架构,旨在提升可解释性和性能。通过使用小波函数替换了之前的B样条(在Spl-KAN中),从而在多个方面显著改进了神经网络架构。
在这里插入图片描述

优点

小波函数替换B样条的优势

  1. 提高准确性

    • 小波函数具有多分辨率分析的能力,能够同时捕捉数据中的高频和低频特征。这种特性使得Wav-KAN在表示复杂函数和数据模式时更加精确,从而在各种任务中展现出更高的准确性。
  2. 加快训练速度

    • 离散小波变换(DWT)在多分辨率分析中的效率很高,避免了在计算过程中重复计算先前步骤的需要。这减少了计算开销,使得Wav-KAN在训练过程中比使用B样条的Spl-KAN和其他传统多层感知机(MLPs)更快。
  3. 增加鲁棒性

    • 小波函数通过正交或半正交基来近似数据,有助于在准确表示数据结构的同时避免过拟合噪声。这种特性增强了Wav-KAN对噪声和异常值的鲁棒性,使其在实际应用中更加可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值