摘要
Wav-KAN是一种利用Wavelet Kolmogorov-Arnold Networks(Wav-KAN)框架的神经网络架构,旨在提升可解释性和性能。通过使用小波函数替换了之前的B样条(在Spl-KAN中),从而在多个方面显著改进了神经网络架构。
优点
小波函数替换B样条的优势
-
提高准确性:
- 小波函数具有多分辨率分析的能力,能够同时捕捉数据中的高频和低频特征。这种特性使得Wav-KAN在表示复杂函数和数据模式时更加精确,从而在各种任务中展现出更高的准确性。
-
加快训练速度:
- 离散小波变换(DWT)在多分辨率分析中的效率很高,避免了在计算过程中重复计算先前步骤的需要。这减少了计算开销,使得Wav-KAN在训练过程中比使用B样条的Spl-KAN和其他传统多层感知机(MLPs)更快。
-
增加鲁棒性:
- 小波函数通过正交或半正交基来近似数据,有助于在准确表示数据结构的同时避免过拟合噪声。这种特性增强了Wav-KAN对噪声和异常值的鲁棒性,使其在实际应用中更加可靠。