文章目录
摘要
🔍 论文亮点速览:
- 🌀 创新卷积结构:提出风车形卷积(PConv),完美匹配红外小目标的高斯分布特性
- ⚖️ 智能动态损失:基于尺度的动态损失(SD Loss),自适应调整不同尺寸目标的损失权重
- 🛸 全新数据集:构建目前最大的实拍红外小目标数据集SIRST-UAVB
- 📈 性能显著提升:在多个模型和数据集上实现SOTA性能,mAP提升最高达4.8%
在红外搜索与跟踪(IRST)领域,小目标检测一直是极具挑战性的任务。随着无人机技术的迅猛发展,红外小目标检测在军事防御和民用安防领域变得愈发重要。然而,传统方法面临三大难题:
- 微小目标特征提取难:目标仅占几个像素,缺乏纹理信息
- 复杂背景干扰大:云层、建筑等背景产生大量杂波
- 标注主观性影响大:人工标注存在显著波动误差
针对这些挑战,最新研究《Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrar