Python学习-softmax+crossEntropyLoss

本文介绍了Python深度学习中softmax函数的作用、log_softmax的溢出解决方案以及nn.CrossEntropyLoss与nn.NLLLoss的差异。内容涵盖softmax的定义、优缺点,log_softmax的数学等价性和稳定性问题,以及在PyTorch中如何使用这些函数进行损失计算。通过实例解析了CrossEntropyLoss如何结合softmax和nll_loss,并讨论了它们在训练过程中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

公式

使用

代码

参考


简介

公式

softmax

  • 函数 Softmax(x) 也是一个 non-linearity, 但它的特殊之处在于它通常是网络中一次操作. 这是因为它接受了一个实数向量并返回一个概率分布.其定义如下. 定义 x 是一个实数的向量(正数或负数都无所谓, 没有限制). 然后, 第i个 Softmax(x) 的组成是

输出是一个概率分布: 每个元素都是非负的, 并且每行/列所有元素的总和都是1,每个值都是0-1.

  • 优点是进行归一化
  • 缺点是容易溢出

log_softmax

  • 在softmax的结果上再做多一次log运算,全都是负数。,虽然在数学上等价于log(softmax(x)),但做这两个 单独操作速度较慢,数值上也不稳定
  • 解决softmax的溢出问题

nn.CrossEntropyLoss() 与 NLLLoss()

  • NLLLoss 的 输入 是一个对数概率向量和一个目标标签. 它不会为我们计算对数概率. 适合网络的最后一层是log_softmax. 
  • 损失函数 nn.CrossEntrop
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值