【LSR标签平滑理解】

深度解析:标签平滑正则化(LSR)
标签平滑正则化(LSR)用于改善深度学习模型的泛化能力,通过平滑真实标签避免过拟合。本文从动机、实现方式、公式及应用场景等方面详细阐述LSR的原理和实践。

目录

1、动机

2、白话举例了解

一)、为什么有标签平滑正则化(Label Smoothing Regularization, LSR)的方法?

二)、标签平滑是如何实现的?

三)、标签平滑的公式

四)、进行标签平滑的softmax损失的代码实现

五)、标签平滑的应用场景

六)、总结


转载深度学习中的标签平滑正则化(Label Smoothing Regularization)方法原理详解

1、动机

最近在看KD相关资料,看到有对KD知识蒸馏的一种解释,于是准备记录下

2、白话举例了解

一)、为什么有标签平滑正则化(Label Smoothing Regularization, LSR)的方法?

在深度学习样本训练的过程中,我们采用one-hot真实标签去进行计算交叉熵损失时,只考虑到训练样本中正确的标签位置(one-hot标签为1的位置)的损失,而忽略了错误标签位置(one

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值