1 xxl-job
1.1 前言
1.1.1 xxl-job简介
XXL-JOB
是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。
设计思想:将调度行为抽象形成 调度中心
平台,平台本身不承担业务逻辑,而是负责发起 调度请求
后,由 执行器
接收调度请求并执行 任务
,这里的 任务
抽象为 分散的 JobHandler
。通过这种方式即可实现 调度 与 任务 相互解耦,从而提高系统整体的稳定性和拓展性。
官网的架构图:
1.1.2 任务调度
在开发项目时可能遇到过类似的场景问题:
- 系统需要定时在每天0点进行数据备份。
- 系统需要在活动开始前几小时预热执行一些前置业务。
- 系统需要定时对
MQ
消息表的发送装填,对发送失败的MQ
消息进行补偿重新发送。
这些场景问题都可以通过 任务调度
来解决,任务调度
指的是系统在约定的指定时间自动去执行指定的任务的过程。
1.1.3 分布式任务调度平台
在分布式下,每个服务都可以搭建为集群,这样的好处是可以将任务切片分给每一个服务从而实现并行执行,提高任务调度的处理效率。那么为什么 分布式系统
不能使用 单体系统
的任务调度实现方式呢。
在集群服务下,如果还是使用每台机器按照单体系统的任务调度实现方式实现的话,会出现下面这四个问题:
- 怎么做到对任务的控制(如何避免任务重复执行)
- 如果某台机器宕机了,会不会存在任务丢失
- 如果要增加服务实例,怎么做到弹性扩容
- 如何做到对任务调度的执行情况统一监测
通过上面的问题可以了解到分布式系统下需要一个满足高可用、容错管理、负载均衡
等功能的任务调度平台来实现任务调度。分布式系统下,也有许多可以实现任务调度的第三方的分布式任务调度系统,如 xxl-job、Quartz、elastic-job 等等常用的分布式任务调度系统。
1.2 使用 xxl-job
作为开源软件的 xxl-job,可以在 github 或 gitee 上查看和下载 xxl-job 的源码。
gitee地址:https://gitee.com/xuxueli0323/xxl-job
github 地址:https://github.com/xuxueli/xxl-job
1.2.1 dokcer 安装 xxl-job
1.2.1.1 拉取镜像
docker 下拉取 xxl-job 的镜像(这里使用 2.3.1 版本)
docker pull xuxueli/xxl-job-admin:2.3.1
创建映射容器的文件目录
mkdir -p -m 777 /mydata/xxl-job/data/applogs
1.2.1.2 创建配置文件
在 /mydata/xxl-job
的目录下创建 application.properties
文件
application.properties
的具体路径如图:
这里需要注意数据库位置的填写:
如果还需要更改端口的可以更改这里:
这里还需要注意告警邮箱和访问口令(后续Spring Boot配置用到):
将 tables_xxl-job.sql 文件导入上面步骤3指定的数据库(自己填写的那个数据库)
sql获取的路径图:
1.2.1.3 执行 docker 命令
注意这里的 -p 8088:8088
是因为更改了前面 application.porperties 文件的端口号为 8088,所以这里执行的 docker
命令为 -p 8088:8088
,如果没有更改的这里一定要改为 -p 8080:8080。
docker run -p 8088:8088 \
-d --name=xxl-job-admin --restart=always \
-v /mydata/xxl-job/application.properties:/application.properties \
-v /mydata/xxl-job/data/applogs:/data/applogs \
-e PARAMS='--spring.config.location=/application.properties' xuxueli/xxl-job-admin:2.3.1
执行后通过 docker ps
查看是否成功运行,如果失败可以通过 docker logs xxl-job-admin
查看具体错误日志。
1.2.1.4 登录查看
通过 http://127.0.0.1:8088/xxl-job-admin/ 访问(这里ip和端口是自己的)
账号:admin 密码:123456
1.2.2 Spring Boot 项目集成 xxl-job
xxl-job
由 调度中心 和 执行器 组成,上面已经完成了在 docker 上部署调度中心了,接下来介绍怎么配置部署执行器项目。
点击此处了解 xxl-job之API的方式接入
1.2.2.1 pom依赖与配置文件
在 Spring Boot 项目中导入 maven 依赖
<dependency>
<groupId>com.xuxueli</groupId>
<artifactId>xxl-job-core</artifactId>
<version>2.3.1</version>
</dependency>
这里需要注意版本号与 xxl-job 版本需要一致,这里我配置的都是 2.3.1 版本。
在 Spring Boot 项目中配置 application.yml
文件
xxl:
job:
admin:
addresses: http://192.168.101.25:8088/xxl-job-admin
executor:
appname: media-process-service
address:
ip:
port: 9999
logpath: /data/applogs/xxl-job/jobhandler
logretentiondays: 30
accessToken: default_token
配置说明:
xxl.job.admin.addresses
用于指定调度中心的地址。xxl.job.accessToken
用于指定访问口令(也就是前面搭建 xxl-job 中步骤3指定的)。xxl.job.executor.appname
用于指定执行器的名称(需要与后续配置执行器的名称一致)。xxl.job.executor.port
用于指定执行器的端口(执行器实际上是一个内嵌的 Server,默认端口为9999,配置多个同一服务实例时需要指定不同的执行器端口,否则会端口冲突)。
1.2.2.2 编写配置类
@Slf4j
@Configuration
public class XxlJobConfig {
@Value("${xxl.job.admin.addresses}")
private String adminAddresses;
@Value("${xxl.job.accessToken}")
private String accessToken;
@Value("${xxl.job.executor.appname}")
private String appname;
@Value("${xxl.job.executor.address}")
private String address;
@Value("${xxl.job.executor.ip}")
private String ip;
@Value("${xxl.job.executor.port}")
private int port;
@Value("${xxl.job.executor.logpath}")
private String logPath;
@Value("${xxl.job.executor.logretentiondays}")
private int logRetentionDays;
@Bean
public XxlJobSpringExecutor xxlJobExecutor() {
log.info(">>>>>>>>>>> xxl-job config init.");
XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
xxlJobSpringExecutor.setAppname(appname);
xxlJobSpringExecutor.setAddress(address);
xxlJobSpringExecutor.setIp(ip);
xxlJobSpringExecutor.setPort(port);
xxlJobSpringExecutor.setAccessToken(accessToken);
xxlJobSpringExecutor.setLogPath(logPath);
xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
return xxlJobSpringExecutor;
}
}
1.2.2.3 调度中心中新增执行器
执行器的配置属性:
自动注册
:执行器自动进行执行器注册,调度中心通过底层注册表可以动态发现执行器机器地址。手动录入
:人工手动录入执行器的地址信息,多地址逗号分隔,供调度中心使用。AppName
:每个执行器集群的唯一标示AppName
,执行器会周期性以AppName
为对象进行自动注册。可通过该配置自动发现注册成功的执行器,供任务调度时使用。名称
:执行器的名称(可以使用中文更好地体现该执行器是用来干嘛的)。注册方式
:调度中心获取执行器地址的方式(一般为了方便可以选用自动注册即可)。机器地址
:"注册方式"为"手动录入"时有效,支持人工维护执行器的地址信息。
1.2.2.4 配置自定义任务
配置自定义任务有许多种模式,如 Bean模式(基于方法)、Bean模式(基于类)、GLUE模式等等。这里介绍通过 Bean模式(基于方法) 是如何自定义任务的。
Bean模式(基于方法)也就是每个任务对应一个方法,通过添加 @XxLJob(value="自定义JobHandler名称", init = "JobHandler初始化方法", destroy = "JobHandler销毁方法")
注解即可完成定义。
/**
* 任务处理类
*/
@Component
public class TestJob {
/**
* 测试任务
*/
@XxlJob("testHandler")
public void testHandler() {
XxlJobHelper.log("start.... ");
XxlJobHelper.handleSuccess("本次测试任务调度成功");
}
}
- 通过注解也可以指定
初始化方法和销毁方法
,如果不填写可以直接写一个自定义的JobHandler名称
用于后面在调度中心中配置任务时对应任务的JobHandler
属性值。 - 可以通过
XxlJobHelper.log
来打印日志,通过调度中心可以查看执行日志的情况。 - 可以通过
XxlJobHelper.handleFail
或XxlJobHelper.handleSuccess
手动设置任务调度的结果(不设置时默认结果为成功状态,除非任务执行时出现异常)。
1.2.2.5 调度中心中新增任务及参数说明
这里主要注意 Cron
表达式的时间配置以及 JobHandler
的值需要与自定义任务方法的注解上的 value
属性值一致即可。
高级配置:
路由策略
:当执行器集群部署时,提供丰富的路由策略,包括:FIRST(第一个)
:固定选择第一个机器;LAST(最后一个)
:固定选择最后一个机器;ROUND(轮询)
:;RANDOM(随机)
:随机选择在线的机器;CONSISTENT_HASH(一致性HASH)
:每个任务按照Hash
算法固定选择某一台机器,且所有任务均匀散列在不同机器上。LEAST_FREQUENTLY_USED(最不经常使用)
:使用频率最低的机器优先被选举;LEAST_RECENTLY_USED(最近最久未使用)
:最久未使用的机器优先被选举;FAILOVER(故障转移)
:按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度BUSYOVER(忙碌转移)
:按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度SHARDING_BROADCAST(分片广播)
:广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数,可根据分片参数开发分片任务;
- 子任务:每个任务都拥有一个唯一的任务ID(任务ID可以从任务列表获取),当本任务执行结束并且执行成功时,将会触发子任务ID所对应的任务的一次主动调度。
- 调度过期策略:
- 忽略:调度过期后,忽略过期的任务,从当前时间开始重新计算下次触发时间;
- 立即执行一次:调度过期后,立即执行一次,并从当前时间开始重新计算下次触发时间;
- 阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;
- 单机串行(默认):调度请求进入单机执行器后,调度请求进入
FIFO
队列并以串行方式运行; - 丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;
- 覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;
- 单机串行(默认):调度请求进入单机执行器后,调度请求进入
- 任务超时时间:支持自定义任务超时时间,任务运行超时将会主动中断任务;
- 失败重试次数:支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;
1.3 xxl-job 实战分片任务
1.3.1 实战背景
假如项目需要对上传到分布式文件系统 minio
中的视频文件进行统一格式的视频转码操作,由于视频转码操作会带了很大的时间消耗以及 CPU 的开销,所以考虑集群服务下使用 xxl-job
的方式以任务调度的方式定时处理视频转码操作。
点击了解 SpringBoot整合Minio
这样可以带来两个好处:
- 任务调度的方式,可以使得视频转码操作不会阻塞主线程,避免影响主要业务的吞吐量;
- 以集群服务分片接收任务的方式,可以将任务均分给每个机器使得任务调度可以并行执行,提高总任务处理时间以及降低单台机器 CPU 的开销;
1.3.2 xxl-job
1.3.2.1 执行流程图
1.3.2.2 怎么将任务均分给每台服务器
由于任务执行时间过长,需要搭建集群服务来做到并行任务调度,从而减小 CPU 的开销,那么怎么均分任务呢?
利用 xxl-job
在集群部署时,配置路由策略中选择 分片广播
的方式,可以使一次任务调度会广播触发集群中所有的执行器执行一次任务,并且可以向系统传递分片参数。
利用这一特性可以根据 当前执行器的分片序号和分片总数
来获取对应的任务记录。
先来看看 Bean 模式下怎么获取分片序号和分片总数:
// 分片序号(当前执行器序号)
int shardIndex = XxlJobHelper.getShardIndex();
// 分片总数(执行器总数)
int shardTotal = XxlJobHelper.getShardTotal();
有了这两个属性,当执行器扫描数据库获取记录时,可以根据 取模
的方式获取属于当前执行器的任务,可以这样编写 sql 获取任务记录:
select * from media_process m
where m.id % #{shareTotal} = #{shareIndex}
and (m.status = '1' or m.status = '3')
and m.fail_count < 3
limit #{count}
扫描任务表,根据任务 id 对分片总数 取模
来实现对所有分片的均分任务,通过判断是否是当前分片序号,并且当前任务状态为 1(未处理)或 3(处理失败)并且当前任务失败次数小于3次时可以取得当前任务。每次扫描只取出 count 个任务数(批量处理)。
因此通过 xxl-job
的分片广播 + 取模
的方式即可实现对集群服务均分任务的操作。
1.3.2.3 怎么确保任务不会被重复消费
由于视频转码本身处理时间就会比较长,所以更不允许服务重复执行,虽然上面通过分片广播+取模
的方式提高了任务不会被重复执行的机率,但是依旧存在如下情况:
如下图,有三台集群机器和六个任务,刚开始分配好了每台机器两个任务,执行器0正准备执行任务3时,刚好执行器2宕机了,此时执行器1刚好执行一次任务,因为分片总数减小,导致执行器1重新分配到需要执行的任务正好也是任务3,那么此时就会出现执行器0和执行器1都在执行任务3的情况。
那么这种情况就需要实现幂等性
了,幂等性有很多种实现方法
这里使用乐观锁的方式实现幂等性,具体 sql 如下:
update media_process m
set m.status = '2'
where (m.status = '1' or m.status = '3')
and m.fail_count < 3
and m.id = #{id}
这里只需要依靠任务的状态即可实现(未处理1;处理中2;处理失败3;处理成功4),可以看到这里类似于 CAS
的方式通过比较和设置的方式只有在状态为未处理或处理失败时才能设置为处理中。这样在并发场景下,即使多个执行器同时处理该任务,也只有一个任务可以设置成功进入处理任务阶段。
为了真正达到幂等性,还需要设置一下 xxl-job
的调度过期策略
和阻塞处理策略
来保证真正的幂等性。分别设置为 忽略
(调度过期后,忽略过期的任务,从当前时间开始重新计算下次触发时间) 和 丢弃后续调度
(调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败)。
1.3.3 其他操作
1.3.3.1 分片视频转码处理
/**
* 视频转码处理任务
*/
@XxlJob("videoTranscodingHandler")
public void videoTranscodingHandler() throws InterruptedException {
int shardTotal = XxlJobHelper.getShardTotal();//总分片数
int shardIndex = XxlJobHelper.getShardIndex();//当前分片数
// 1. 分片获取当前执行器需要执行的所有任务
List<MediaProcess> mediaProcessList = mediaProcessService.getMediaProcessList(shardIndex, shardTotal, count);
// 通过JUC工具类阻塞直到所有任务执行完
CountDownLatch countDownLatch = new CountDownLatch(mediaProcessList.size());
// 遍历所有任务
mediaProcessList.forEach(mediaProcess -> {
// 以多线程的方式执行所有任务
executor.execute(() -> {
try {
// 2. 尝试抢占任务(通过乐观锁实现)
boolean res = mediaProcessService.startTask(id);
if (!res) {
XxlJobHelper.log("任务抢占失败,任务id{}", id);
return;
}
// 3. 从minio中下载视频到本地
File file = mediaFileService.downloadFileFromMinIO(bucket, objectName);
// 下载失败
if (file == null) {
XxlJobHelper.log("下载视频出错,任务id:{},bucket:{},objectName:{}", id, bucket, objectName);
// 出现异常重置任务状态为处理失败等待下一次处理
mediaProcessService.saveProcessFinishStatus(id, Constants.MediaProcessCode.FAIL.getValue(), fileId, null, "下载视频到本地失败");
return;
}
// 4. 视频转码
String result = videoUtil.generateMp4();
if (!result.equals("success")) {
XxlJobHelper.log("视频转码失败,原因:{},bucket:{},objectName:{},", result, bucket, objectName);
// 出现异常重置任务状态为处理失败等待下一次处理
mediaProcessService.saveProcessFinishStatus(id, Constants.MediaProcessCode.FAIL.getValue(), fileId, null, "视频转码失败");
return;
}
// 5. 上传转码后的文件
boolean b1 = mediaFileService.addMediaFilesToMinIO(new_File.getAbsolutePath(), "video/mp4", bucket, objectNameMp4);
if (!b1) {
XxlJobHelper.log("上传 mp4 到 minio 失败,任务id:{}", id);
// 出现异常重置任务状态为处理失败等待下一次处理
mediaProcessService.saveProcessFinishStatus(id, Constants.MediaProcessCode.FAIL.getValue(), fileId, null, "上传 mp4 文件到 minio 失败");
return;
}
// 6. 更新任务状态为成功
mediaProcessService.saveProcessFinishStatus(id, Constants.MediaProcessCode.SUCCESS.getValue(), fileId, url, "创建临时文件异常");
} finally {
countDownLatch.countDown();
}
});
});
// 阻塞直到所有方法执行完成(30min后不再等待)
countDownLatch.await(30, TimeUnit.MINUTES);
}
核心任务 - 分片获取任务后执行视频转码任务,步骤如下:
- 通过
分片广播
拿到的参数以取模的方式 获取当前执行器所属的任务记录集合 - 遍历集合,以
多线程的方式
并发地执行任务 - 每次执行任务前需要先通过
数据库乐观锁的方式
抢占当前任务,抢占到才能执行 - 执行任务过程分为 分布式文件系统下载需要转码的视频文件 -> 视频转码 -> 上传转码后的视频 -> 更新任务状态(处理成功)
- 使用JUC工具类
CountDownLatch
实现所有任务执行完后才退出方法 - 中间使用 xxl-job 的日志记录错误信息和执行结果
1.3.3.2 视频补偿机制
由于使用乐观锁会将任务状态更新为处理中,如果此时执行任务的执行器(服务)宕机了,会导致该任务记录一直存在,因为乐观锁的原因别的执行器也无法获取,这个时候同样需要使用任务调度的方式,定期扫描任务表,判断任务是否处于处理中状态并且任务创建时间远大于30分钟
,则说明任务超时了,则是使用任务调度的方式重新更新任务的状态为未处理,等待下一次视频转码任务的调度处理。此外视频补偿机制任务调度还需要检查是否存在任务最大次数已经大于3次的,如果存在则交付给人工处理。
主要实现两个功能:① 处理任务超时情况下的任务,做出补偿;② 处理失败次数大于3次的任务,做出补偿;
1.3.3.3 测试并查看日志
准备好的任务表记录:
启动三台媒资服务器,并开启任务:
可以单独查看每个任务的日志:
通过日志中的执行日志查看具体日志信息:
可以看到直接为了测试改错的路径导致下载视频出错:
查看数据库表的变化:
1.4 原理&源码
1.4.1 任务调度 类时间轮
1.4.1.1 时间轮
时间轮出自Netty
中的HashedWheelTimer
,是一个环形结构
,可以用时钟来类比,钟面上有很多bucket
,每一个bucket
上可以存放多个任务,使用一个List保存该时刻到期的所有任务,同时一个指针随着时间流逝一格一格转动,并执行对应bucket
上所有到期的任务。任务通过取模 决定应该放入哪个bucket。和HashMap
的原理类似,newTask对应put,使用List来解决 Hash 冲突。
以上图为例,假设一个bucket
是1秒,则指针转动一轮表示的时间段为8s,假设当前指针指向 0,此时需要调度一个3s后执行的任务,显然应该加入到(0+3=3)的方格中,指针再走3s次就可以执行了;如果任务要在10s后执行,应该等指针走完一轮零2格再执行,因此应放入2,同时将round(1)保存到任务中。检查到期任务时只执行round为0的,bucket上其他任务的round减1。
1.4.1.2 XXL-JOB中 时间轮
XXL-JOB
中的调度方式从Quartz
变成了自研调度的方式,很像时间轮,可以理解为有60个bucket且每个bucket为1秒,但是没有了round的概念。
具体可以看下图
XXL-JOB中负责任务调度的有两个线程,分别为ringThread
和scheduleThread
,其作用如下。
scheduleThread
:对任务信息进行读取,预读未来5s 即将触发的任务,放入时间轮。ringThread
:对当前bucket
和前一个bucket
中的任务取出并执行。
1.4.1.3 源码解释
下面结合源代码看下,为什么说是“类时间轮”,关键代码附上了注解,请大家留意观看。
// 环状结构
private volatile static Map<Integer, List<Integer>> ringData = new ConcurrentHashMap<>();
// 任务下次启动时间(单位为秒) % 60
int ringSecond = (int)((jobInfo.getTriggerNextTime()/1000)%60);
// 任务放进时间轮
private void pushTimeRing(int ringSecond, int jobId){
// push async ring
List<Integer> ringItemData = ringData.get(ringSecond);
if (ringItemData == null) {
ringItemData = new ArrayList<Integer>();
ringData.put(ringSecond, ringItemData);
}
ringItemData.add(jobId);
}
// 同时取两个时间刻度的任务
List<Integer> ringItemData = new ArrayList<>();
int nowSecond = Calendar.getInstance().get(Calendar.SECOND);
// 避免处理耗时太长,跨过刻度,向前校验一个刻度;
for (int i = 0; i < 2; i++) {
List<Integer> tmpData = ringData.remove( (nowSecond+60-i)%60 );
if (tmpData != null) {
ringItemData.addAll(tmpData);
}
}
// 运行
for (int jobId: ringItemData) {
JobTriggerPoolHelper.trigger(jobId, TriggerTypeEnum.CRON, -1, null, null);
}
1.4.2 一致性Hash路由中的Hash算法
大家知道,XXL-JOB
在执行任务时,任务具体在哪个执行器上运行是根据路由策略来决定的,其中有一个策略是一致性Hash
策略(源码在ExecutorRouteConsistentHash.java
),自然而然想到了一致性Hash算法 。
一致性Hash算法
:是为了解决分布式系统中负载均衡的问题时候可以使用Hash算法
让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡的作用。普通的余数hash
(hash(比如用户id)%服务器机器数)算法伸缩性很差,当新增或者下线服务器机器时候,用户id与服务器的映射关系会大量失效。一
致性hash则利用hash环对其进行了改进。
一致性Hash算法
在实践中,当服务器节点比较少的时候会出现上节所说的一致性hash倾斜的问题,一个解决方法是多加机器,但是加机器是有成本的,那么就加虚拟节点 。
下图为带有虚拟节点的Hash环,其中ip1-1是ip1的虚拟节点,ip2-1是ip2的虚拟节点,ip3-1是ip3的虚拟节点。
可见 ,一致性Hash算法
的关键在于Hash算法
,保证虚拟节点 及Hash结果 的均匀性,而均匀性可以理解为减少Hash冲突 。
XXL-JOB中的一致性Hash的Hash函数如下。
// jobId转换为md5
// 不直接用hashCode() 是因为扩大hash取值范围,减少冲突
byte[] digest = md5.digest();
// 32位hashCode
long hashCode = ((long) (digest[3] & 0xFF) << 24)
| ((long) (digest[2] & 0xFF) << 16)
| ((long) (digest[1] & 0xFF) << 8)
| (digest[0] & 0xFF);
long truncateHashCode = hashCode & 0xffffffffL;
HashMap的Hash函数
f(key) = hash(key) & (table.length - 1)
// 使用>>> 16的原因,hashCode()的高位和低位都对f(key)有了一定影响力,
//使得分布更加均匀,散列冲突的几率就小了。
hash(key) = (h = key.hashCode()) ^ (h >>> 16)
同理,将jobId的md5编码的高低位都对Hash结果有影响,使得Hash冲突的概率减小。
1.4.3 分片任务的实现-维护线程上下文
XXL-JOB
的分片任务
实现了任务的分布式执行,日常开发中很多定时任务都是单机执行,对于后续数据量大的任务最好有一个分布式的解决方案。
public enum ExecutorRouteStrategyEnum {
FIRST(I18nUtil.getString("jobconf_route_first"), new ExecutorRouteFirst()),
LAST(I18nUtil.getString("jobconf_route_last"), new ExecutorRouteLast()),
ROUND(I18nUtil.getString("jobconf_route_round"), new ExecutorRouteRound()),
RANDOM(I18nUtil.getString("jobconf_route_random"), new ExecutorRouteRandom()),
CONSISTENT_HASH(I18nUtil.getString("jobconf_route_consistenthash"), new ExecutorRouteConsistentHash()),
LEAST_FREQUENTLY_USED(I18nUtil.getString("jobconf_route_lfu"), new ExecutorRouteLFU()),
LEAST_RECENTLY_USED(I18nUtil.getString("jobconf_route_lru"), new ExecutorRouteLRU()),
FAILOVER(I18nUtil.getString("jobconf_route_failover"), new ExecutorRouteFailover()),
BUSYOVER(I18nUtil.getString("jobconf_route_busyover"), new ExecutorRouteBusyover()),
// 说好的实现呢???竟然是null
SHARDING_BROADCAST(I18nUtil.getString("jobconf_route_shard"), null);
首先分片任务执行参数传递的是什么?看XxlJobTrigger.trigger
函数中的一段代码。
...
// 如果是分片路由,走的是这段逻辑
if (ExecutorRouteStrategyEnum.SHARDING_BROADCAST == ExecutorRouteStrategyEnum.match(jobInfo.getExecutorRouteStrategy(), null)
&& group.getRegistryList() != null && !group.getRegistryList().isEmpty()
&& shardingParam == null) {
for (int i = 0; i < group.getRegistryList().size(); i++) {
// 最后两个参数,i是当前机器在执行器集群当中的index,group.getRegistryList().size()为执行器总数
processTrigger(group, jobInfo, finalFailRetryCount, triggerType, i, group.getRegistryList().size());
}
}
...
参数经过自研RPC传递到执行器,在执行器中具体负责任务执行的JobThread.run中,看到了如下代码。
// 分片广播的参数比set进了ShardingUtil
ShardingUtil.setShardingVo(new ShardingUtil.ShardingVO(triggerParam.getBroadcastIndex(), triggerParam.getBroadcastTotal()));
...
// 将执行参数传递给jobHandler执行
handler.execute(triggerParamTmp.getExecutorParams())
接着看ShardingUtil
public class ShardingUtil {
// 线程上下文
private static InheritableThreadLocal<ShardingVO> contextHolder = new InheritableThreadLocal<ShardingVO>();
// 分片参数对象
public static class ShardingVO {
private int index; // sharding index
private int total; // sharding total
// 次数省略 get/set
}
// 参数对象注入上下文
public static void setShardingVo(ShardingVO shardingVo){
contextHolder.set(shardingVo);
}
// 从上下文中取出参数对象
public static ShardingVO getShardingVo(){
return contextHolder.get();
}
}
显而易见,在负责分片任务的ShardingJobHandler
里取出了线程上下文中的分片参数
@JobHandler(value="shardingJobHandler")
@Service
public class ShardingJobHandler extends IJobHandler {
@Override
public ReturnT<String> execute(String param) throws Exception {
// 分片参数
ShardingUtil.ShardingVO shardingVO = ShardingUtil.getShardingVo();
XxlJobLogger.log("分片参数:当前分片序号 = {}, 总分片数 = {}", shardingVO.getIndex(), shardingVO.getTotal());
// 业务逻辑
for (int i = 0; i < shardingVO.getTotal(); i++) {
if (i == shardingVO.getIndex()) {
XxlJobLogger.log("第 {} 片, 命中分片开始处理", i);
} else {
XxlJobLogger.log("第 {} 片, 忽略", i);
}
}
return SUCCESS;
}
}
由此得出,分布式实现是根据分片参数index及total来做的,简单来讲,就是给出了当前执行器的标识,根据这个标识将任务的数据或者逻辑进行区分,即可实现分布式运行。