最大独立集(二分图)

原题: http://poj.org/problem?id=2771

题意:

二分图配对,找出最大的点集,使集合中任意两个点之间不能连接

定理:

最大独立集=顶点数-二分图最大匹配

证明:

从原来的点集中删除最少的点使剩下的点不连接,其点数为最小点覆盖=二分图最大匹配数,所以最大独立集=顶点数-二分图最大匹配。

解析:

这里是一个普通的图,其实二分图匹配算法之所以需要二分图是因为:我的主函数的for循环中,跑的是所有左边部分的点,这样就不会在跑右边部分时重复计算。

这里可以将点按性别分成两部分,使用模板即可

#include<string.h>
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<map>
#include<string>
using namespace std;
const int N=501;
#define debug(i) printf("# %d\n",i)

int n;
int cm[N];
bool sex[N];
int id1[N],id2[N];

int match[N];
bool vis[N];

int dfs(int u){  
    for(int i=1;i<=n;i++){
        //不能连接
        if(i==u||vis[i]||abs(cm[i]-cm[u])>40||sex[i]==sex[u]||id1[u]!=id1[i]||id2[u]==id2[i])continue;
        vis[i]=1;
        if(!match[i]||dfs(match[i])){match[i]=u; return 1;}
    }
    return 0;
}

map<string,int>ver1,ver2;
int now1,now2;
int main(){int t;cin>>t;while(t--){
    ver1.clear(),ver2.clear();
    now1=0,now2=0;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        char x[2];
        scanf("%d%s",cm+i,x);
        if(x[0]=='M')sex[i]=1;
        else sex[i]=0;
        string _1,_2;cin>>_1>>_2;
        if(!ver1.count(_1))ver1[_1]=++now1;
        if(!ver2.count(_2))ver2[_2]=++now2;
        id1[i]=ver1[_1];
        id2[i]=ver2[_2];
    }
    memset(match,0,sizeof(match));
    int ans=0;
    for(int i=1;i<=n;i++){
        if(sex[i])continue;
        memset(vis,0,sizeof(vis));
        if(dfs(i))ans++;
    }
    printf("%d\n",n-ans);
}}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值