原题: http://poj.org/problem?id=2771
题意:
二分图配对,找出最大的点集,使集合中任意两个点之间不能连接
定理:
最大独立集=顶点数-二分图最大匹配
证明:
从原来的点集中删除最少的点使剩下的点不连接,其点数为最小点覆盖=二分图最大匹配数,所以最大独立集=顶点数-二分图最大匹配。
解析:
这里是一个普通的图,其实二分图匹配算法之所以需要二分图是因为:我的主函数的for循环中,跑的是所有左边部分的点,这样就不会在跑右边部分时重复计算。
这里可以将点按性别分成两部分,使用模板即可
#include<string.h>
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<map>
#include<string>
using namespace std;
const int N=501;
#define debug(i) printf("# %d\n",i)
int n;
int cm[N];
bool sex[N];
int id1[N],id2[N];
int match[N];
bool vis[N];
int dfs(int u){
for(int i=1;i<=n;i++){
//不能连接
if(i==u||vis[i]||abs(cm[i]-cm[u])>40||sex[i]==sex[u]||id1[u]!=id1[i]||id2[u]==id2[i])continue;
vis[i]=1;
if(!match[i]||dfs(match[i])){match[i]=u; return 1;}
}
return 0;
}
map<string,int>ver1,ver2;
int now1,now2;
int main(){int t;cin>>t;while(t--){
ver1.clear(),ver2.clear();
now1=0,now2=0;
scanf("%d",&n);
for(int i=1;i<=n;i++){
char x[2];
scanf("%d%s",cm+i,x);
if(x[0]=='M')sex[i]=1;
else sex[i]=0;
string _1,_2;cin>>_1>>_2;
if(!ver1.count(_1))ver1[_1]=++now1;
if(!ver2.count(_2))ver2[_2]=++now2;
id1[i]=ver1[_1];
id2[i]=ver2[_2];
}
memset(match,0,sizeof(match));
int ans=0;
for(int i=1;i<=n;i++){
if(sex[i])continue;
memset(vis,0,sizeof(vis));
if(dfs(i))ans++;
}
printf("%d\n",n-ans);
}}