视觉SLAM笔记(3) 视觉SLAM框架

本文介绍了视觉SLAM的经典框架,包括传感器信息读取、视觉里程计、后端优化、回环检测和建图。视觉里程计通过相邻图像估计相机运动,但累积漂移问题需要后端优化和回环检测来解决。回环检测通过识别重复场景减少误差,建图则根据轨迹创建度量或拓扑地图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1. 经典框架

相机在场景中运动的过程,将得到一系列连续变化图像
视觉 SLAM 的目标,是通过这样的一些图像,进行定位和地图构建

但这件事情并没有想象的那么简单
它不是某种算法,只要输入数据,就可以往外不断地输出定位和地图信息了
SLAM需要一个完善的算法框架,而经过研究者们长期的研究工作,现有这个框架已经定型了
在这里插入图片描述

把整个视觉 SLAM 流程分为以下几步:

  1. 传感器信息读取
    在视觉 SLAM 中主要为相机图像信息的读取和预处理
    如果在机器人中,还可能有码盘、惯性传感器等信息的读取和同步
  2. 视觉里程计 (Visual Odometry, VO)
    视觉里程计任务是估算相邻图像间相机的运动,以及局部地图的样子
    VO 又称为 前端(Front End)
  3. 后端优化(Optimization)
    后端接受不同时刻视觉里程计测量的相机位姿,以及回环检测的信息
    对它们进行优化,得到全局一致的轨迹和地图
    由于接在 VO 之后,又称为后端(Back End)
  4. 回环检测
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氢键H-H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值