题意:
给你一个完全图,每个边被赋值为0或1,问这个完全图中有多少个完美三角形?
完美三角形定义:三角形的三边都为0或1
题解:
正着求不好求,我们可以倒着想
不考虑完美,完全图中有多少三角形?很明显C(2,n),
完美三角形=所有三角形-不完美三角形
不完美三角形就是同时存在0和1,我们现在这么想,假设点i有n个出边是1,有m个出边是0,那么可以组成的完美三角形就是m*n,第三个边不用考虑,因为已经有两个不一样了,但是这样会有重复,一个三角形会被统计两遍(两个连接点),所以除以2就行
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace GenHelper
{
unsigned z1,z2,z3,z4,b,u;
unsigned get()
{
b=((z1<<6)^z1)>>13;
z1=((z1&4294967294U)<<18)^b;
b=((z2<<2)^z2)>>27;
z2=((z2&4294967288U)<<2)^b;
b=((z3<<13)^z3)>>21;
z3=((z3&4294967280U)<<7)^b;
b=((z4<<3)^z4)>>12;
z4=((z4&4294967168U)<<13)^b;
return (z1^z2^z3^z4);
}
bool read() {
while (!u) u = get();
bool res = u & 1;
u >>= 1; return res;
}
void srand(int x)
{
z1=x;
z2=(~x)^0x233333333U;
z3=x^0x1234598766U;
z4=(~x)+51;
u = 0;
}
}
using namespace GenHelper;
const int maxn=8010;
int n, seed;
bool edge[maxn][maxn];
ll red[maxn];
int main() {
cin >> n >> seed;
srand(seed);
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
edge[j][i] = edge[i][j] = read();
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
red[i]+=edge[i][j];
}
}
ll ans=0;
for(int i=0;i<n;i++){
ans+=1ll*red[i]*(n-1-red[i]);
}
printf("%lld\n",1ll*n*(n-1)*(n-2)/6-(ans>>1));
return 0;
}