Counting Triangles

本文讲解了一种解决完全图中完美三角形数量问题的巧妙方法,通过计算所有可能三角形减去不完美三角形(即同时包含0和1的边),并避免重复计数。代码示例展示了如何利用位操作实现高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Counting Triangles

题意:

给你一个完全图,每个边被赋值为0或1,问这个完全图中有多少个完美三角形?
完美三角形定义:三角形的三边都为0或1

题解:

正着求不好求,我们可以倒着想
不考虑完美,完全图中有多少三角形?很明显C(2,n),
完美三角形=所有三角形-不完美三角形
不完美三角形就是同时存在0和1,我们现在这么想,假设点i有n个出边是1,有m个出边是0,那么可以组成的完美三角形就是m*n,第三个边不用考虑,因为已经有两个不一样了,但是这样会有重复,一个三角形会被统计两遍(两个连接点),所以除以2就行
在这里插入图片描述

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace GenHelper
{
    unsigned z1,z2,z3,z4,b,u;
    unsigned get()
    {
        b=((z1<<6)^z1)>>13;
        z1=((z1&4294967294U)<<18)^b;
        b=((z2<<2)^z2)>>27;
        z2=((z2&4294967288U)<<2)^b;
        b=((z3<<13)^z3)>>21;
        z3=((z3&4294967280U)<<7)^b;
        b=((z4<<3)^z4)>>12;
        z4=((z4&4294967168U)<<13)^b;
        return (z1^z2^z3^z4);
    }
    bool read() {
      while (!u) u = get();
      bool res = u & 1;
      u >>= 1; return res;
    }
    void srand(int x)
    {
        z1=x;
        z2=(~x)^0x233333333U;
        z3=x^0x1234598766U;
        z4=(~x)+51;
      	u = 0;
    }
}
using namespace GenHelper;
const int maxn=8010;
int n, seed;
bool edge[maxn][maxn];
ll red[maxn]; 
int main() {
  cin >> n >> seed;
  srand(seed);
  for (int i = 0; i < n; i++)
    	for (int j = i + 1; j < n; j++)
        	edge[j][i] = edge[i][j] = read();
        	
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			red[i]+=edge[i][j];
		}
	}
	ll ans=0;
	for(int i=0;i<n;i++){
		ans+=1ll*red[i]*(n-1-red[i]);
	}
	printf("%lld\n",1ll*n*(n-1)*(n-2)/6-(ans>>1));
 	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值