P2467 [SDOI2010]地精部落

该博客探讨了一个关于波动序列排列的问题,其中序列必须按照山峰山谷的顺序排列。给出了利用动态规划求解的思路,包括序列的两个关键性质,并详细解释了状态转移方程。最终代码实现了一个O(n)时间复杂度的解决方案,计算所有可能的波动序列数量并模p得到答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P2467 [SDOI2010]地精部落

题意:

有n个山脉高度分别是1到n,现在让你按照山峰山谷的顺序依次摆放(第一个可以是山峰也可以是山谷),问有多少方案(答案mod p)

题解:

dp,但是自己推不出来
这个博客讲的非常详细,方案也非常多
我就先将第一个方案:
我们先去看这个波动序列有什么性质?

  1. 在一个波动序列中,如果i-1与i不相邻,交换i-1与i即可得到一个新的波动序列
  2. 把长度为n的一个波动序列中的数字ai变成(n+1)-ai,会得到一个新的波动序列,且新波动序列的山峰和山谷与原序列相反

我们根据这两个性质开始推状态与转移
设dp[i][j]表示由i个数(1~i)组成,且第一个数是j,且j为山峰(即第一个会大于第二个)的波动序列数
我们现在考虑哪些会给dp[i][j]做贡献
如果j-1与j不相邻,由性质1可知,交换j-1和j会得到新的序列,这些序列就是以j−1开头的所有波动序列,且这些序列与交换前的序列一一对应,所以有贡献dp[i][j-1]表示以j开头的一些波动序列可以由以j−1开头的波动序列转移过来
如果j-1与j相邻,我们既然规定了j是山峰,那么j-1就是山谷。此时我们考虑性质2的贡献,对于i个数组成序列,第一位是j,还有i-1位的长度未确定,那么长度为i-1,以j-1开头,且j-1为山谷的序列会贡献答案,但是我们这一直统计山峰哪来山谷?山谷相反就是山峰,所以以(i-1+1)-(j-1)即i-j+1开头且i-j+1为山峰的序列数相同,所以再加上一个dp[i-1][i-j+1]
所以有 d p [ i ] [ j ] = d p [ i ] [ j − 1 ] + d p [ i − 1 ] [ i − j + 1 ] dp[i][j]=dp[i][j-1]+dp[i-1][i-j+1] dp[i][j]=dp[i][j1]+dp[i1][ij+1]
最后答案是 2 ∗ ∑ i = 2 n d p [ n ] [ i ] 2*\sum_{i=2}^{n}dp[n][i] 2i=2ndp[n][i](以1开头构不成波动序列,因为我们规定了第一个是山峰,如果1开头无法是山峰,但是以1开头的情况也会被计算其中,所以不用担心漏了)

代码:

#include<bits/stdc++.h>
#define debug(a,b) printf("%s = %d\n",a,b);
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
clock_t startTime, endTime;
//Fe~Jozky
const ll INF_ll=1e18;
const int INF_int=0x3f3f3f3f;
inline ll read(){
   ll s=0,w=1ll;
   char ch=getchar();
   while(ch<'0'||ch>'9'){if(ch=='-')w=-1ll;ch=getchar();}
   while(ch>='0'&&ch<='9') s=s*10ll+((ch-'0')*1ll),ch=getchar();//s=(s<<3)+(s<<1)+(ch^48);
   return s*w;
}
void rd_test(){
	#ifdef ONLINE_JUDGE
	#else
		startTime = clock(); //计时开始
        freopen("in.txt","r",stdin);
	#endif
}
void Time_test(){
	#ifdef ONLINE_JUDGE
	#else
		endTime = clock(); //计时结束
   		printf("\n运行时间为:%lfs\n",(double)(endTime - startTime) / CLOCKS_PER_SEC);
	#endif
}
ll f[2][5000];
int main()
{
	//rd_test();
	int n;ll p;
	cin>>n>>p;
	f[0][2]=1;
	for(int i=3;i<=n;i++){
		for(int j=2;j<=i;j++){
			f[i&1][j]=(f[i&1][j-1]+f[(i-1)&1][i-j+1])%p;
		}
	}
	int sum=0;
	for(int i=2;i<=n;i++)
		sum=(sum+f[n&1][i])%p;
	printf("%d\n",(sum<<1)%p); 
	return 0;
	//Time_test();
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值