GCD Game HDU - 7061

该博客探讨了一种基于最大公约数(GCD)的两人博弈问题。玩家轮流从一组整数中选择一个数,并选取一个1到该数之间的x,用gcd运算更新数列。当无法继续操作时,对手获胜。作者通过质因数分解将问题转化为 nim 游戏,并给出代码实现,判断先手是否必胜。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GCD Game HDU - 7061

题意:

有n个数ai,两个人轮流操作,每次选择一个数ai,再人选一个x(1<=x<ai),然后用gcd(ai,x)代替ai
谁先不能操作谁先输掉比赛

题解:

第一反应nim游戏,gcd是取最大公约数,每个数我们都可以分解成一些质因子相乘的形式,例如:ai= x * y *z(x,y,z均为ai的质因子),然后一个人操作时选了xy,gcd(xy,ai)=xy,相当于将z取走了,其实也就是每次取走的时一个或多个质因子,那质因子的个数相当于是石头的数量,每次可以取任意个,这不就是nim博弈吗

代码:

#include<bits/stdc++.h>
using namespace std;
int num[10000010];
int prm[10000010],cnt;
bool f[10000010];
int t,n;
int main()
{
    for(int i=2;i<=10000000;i++)
    {
        if(!f[i])prm[++cnt]=i,num[i]=1;
        for(int j=1;j<=cnt && i*prm[j]<=10000000;j++)
        {
            f[i*prm[j]]=true;
            num[i*prm[j]]=num[i]+1;
            if(i%prm[j]==0)break;
        }
    }
    scanf("%d",&t);
    while(t--)
    {
        int ans=0;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            ans^=num[x];
        }
        if(ans)puts("Alice");else puts("Bob");
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值