自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

JustinMars的博客

专注于大数据和数据挖掘

  • 博客(639)
  • 资源 (2)
  • 收藏
  • 关注

原创 增强学习和蒙特卡洛树搜索算法详细解析

阿尔法狗(AlphaGo)是谷歌旗下DeepMind开发的一个著名的增强学习算法,它在围棋领域取得了显著的成就。本文主要探讨其中两个重要的算法:增强学习算法和蒙特卡洛树搜索算法。

2023-11-16 14:23:39 1095

原创 人工智能:CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的知识梳理

CNN 主要用于处理图像数据,RNN 用于处理序列数据,而 DNN 是一个通用的深度神经网络架构,可以应用于各种不同类型的数据。这些神经网络架构也可以结合使用,以解决复杂的多模态问题。

2023-10-24 17:58:05 9155 6

原创 python烟花代码

python 编写烟花特效代码

2023-10-18 17:05:26 6940 3

原创 Hadoop简介之望见数据湖

1 Hadoop概述随着信息化时代的来临,数据信息呈爆炸式增长。IBM的研究称,90%的人类文明数据是近两年产生的,而到了2020年,全球产生的数据量将是今天的44倍。传统的方法已难以应对越来越多的海量数据,因此海量数据的处理方法成为研究热点。大数据技术研究与应用推动互联网产业的快速发展,同时企业也促进了大数据技术的“新陈代谢”。在国外的计算机行业,Yahoo,Linkedin,Fackbook,eBay等企业都着手搭建Hadoop平台,努力推动Hadoop技术的发展并完善Hadoop项目。在国内,随着

2020-09-28 15:09:37 2725 2

原创 Greenplum安装时修改gpssh-exkeys中SSH免密登录端口

SSH免密登录的默认端口号为22,如果需要使用2226端口,可以修改如下地方298 def testAccess(hostname):299 '''300 Ensure the proper password-less access to the remote host.301 Using ssh here also allows discovery of remote host keys *not*302 reported by ssh-keyscan.303...

2020-09-08 14:13:29 3411 2

原创 ubuntu/centos系统ping 不通域名的解决方案

【代码】ubuntu/centos系统ping 不通域名的解决方案。

2025-07-25 14:37:26 459

原创 llamafactory-cli train 训练参数解析

本文介绍了launcher.py脚本的训练参数配置选项,主要包括模型加载、量化、数据处理和导出等关键参数设置。模型相关参数支持指定预训练模型路径、适配器配置、词表调整和注意力机制选择等功能;量化参数提供多种量化方法(bnb/gptq/awq等)和位宽设置;数据处理参数涵盖图像/视频/音频的预处理选项;导出参数支持模型量化导出和格式转换。此外还包括数据集处理、评估指标和训练策略等配置选项,为模型训练和推理提供全面的参数控制。

2025-07-21 10:02:10 112

原创 使用llama-factory进行qwen3模型微调

qwen3微调

2025-07-15 16:42:16 180

原创 安装llama-factory报错 error: subprocess-exited-with-error

推荐方案:如果你现在是在 conda 环境里(llm_train),最简单、最干净的做法就是。

2025-07-14 11:11:07 162

原创 ollama 运行模型并关闭模型的思考模式

如下载deekseek-r1。

2025-07-07 16:18:53 321

原创 大模型rag增强检索之ragflow安装部署

永久设置,编写/etc/sysctl.conf文件,修改参数。若docker compose版本过低,更新。不满足要求,临时重设参数。

2025-06-26 13:39:02 142

原创 GRPO参考代码

摘要: 群体相对策略优化(GRPO)是一种创新强化学习算法,通过组内响应比较优化策略。其核心特点包括:(1)无价值网络依赖,通过生成G个候选响应并计算归一化奖励作为优势值;(2)结合PPO的裁剪机制和KL正则项确保训练稳定性;(3)目标函数包含策略比值、裁剪优势和KL惩罚项。实验证明,GRPO在多智能体环境中能有效提升策略性能,计算效率优于传统PPO。实现上,算法循环执行数据收集(并行生成候选)、群体优势计算(归一化奖励)、策略梯度更新(含裁剪)等步骤,适用于语言模型强化和协同智能体训练场景。

2025-06-16 17:10:36 68

原创 AI大模型RLHF相关的DPO,PPO,GRPO,DDPG算法解析

大型模型增强学习中,PPO、DPO、DRPO和DDPG是核心算法。PPO通过截断策略更新实现稳定优化,广泛应用于RLHF;DPO简化流程,直接利用偏好数据优化策略;DRPO增强奖励鲁棒性,应对噪声和不确定性;DDPG则结合策略和价值网络处理连续动作空间。这些算法分别从稳定性、效率、鲁棒性和连续性角度推动大型模型与人类偏好的对齐。

2025-06-16 16:14:57 149

原创 python的json模块中的dump、dumps、load 和 loads方法的区别与联系

json 模块主要提供了四种方法来处理JSON数据:dump、dumps、load 和 loads。

2025-06-13 10:14:54 159

原创 多模态之智能数字人

多模态下智能数字人的开发是一个复杂且系统性的工程,它融合了人工智能(AI)、计算机图形学、自然语言处理(NLP)、语音技术、计算机视觉(CV)等多个前沿领域。

2025-06-04 17:21:36 218

原创 商务合同范本智能审核系统 AI 大模型处理方案

AI智能合同审核系统基于AI大模型构建,旨在自动解析商务合同,识别法律风险点(如权责失衡、条款模糊等),并通过企业合规数据库比对提供专业修改建议。采用“预训练大模型+RAG+领域微调”架构,包含数据层(合同库、合规知识库)、预处理模块(文本解析、条款分类)、核心AI层(法律领域微调模型、风险识别)及审核报告生成模块。系统工作流程涵盖合同上传、风险识别、合规比对、修改建议生成及可视化报告输出。关键挑战包括法律数据稀缺性、模型幻觉问题等,将通过专家合作、RAG增强等技术应对。实

2025-06-04 17:06:15 156

原创 ERP、OA、CRM三个企业管理软件的区别与联系

企业信息化三大系统对比: ERP(企业资源计划)聚焦企业内部资源整合,覆盖财务、供应链、生产等核心业务流程,实现全局数据集成与优化;OA(办公自动化)侧重日常行政事务管理,通过工作流、文档管理等提升办公效率;CRM(客户关系管理)专注客户全生命周期管理,涵盖销售、营销和服务等环节。三者分别对应企业内部资源优化、行政效率提升和外部客户关系管理三大维度,大型企业往往需要三者协同配合,形成完整的企业信息化体系。

2025-06-03 10:34:15 64

原创 模型微调之对齐微调KTO

KTO旨在通过优化知识从预训练模型向微调模型的转移过程,使得微调后的模型能够更好地遵循人类指令,提高模型在特定任务上的性能,同时保持模型的泛化能力。它主要关注如何在微调过程中有效地利用预训练模型的知识,减少过拟合,增强模型与人类期望输出的对齐程度。

2025-05-29 15:25:07 116

原创 模型微调之指令微调SFT和参数高效微调PEFT

摘要:指令微调(SFT)通过标注数据优化大语言模型的任务性能,而参数高效微调(PEFT)技术(如LoRA)仅调整少量参数即可实现高效训练。两者结合能在降低计算成本的同时提升模型指令遵循能力。实际应用中,需准备高质量指令数据集(如Alpaca),选择基座模型(如Llama3),并借助LLaMA-Factory或Hugging Face TRL等工具实现SFT与PEFT的协同优化,典型流程包括数据预处理、LoRA配置和模型训练。

2025-05-29 14:59:24 241

原创 rag增强检索-基于关键词检索的混合检索模式

Milvus 2.4 开始原生支持 Hybrid 查询,可以直接用关键词 + 向量同时搜!Qdrant 支持 “filter + vector” 的查询,很丝滑。→ 先关键词召回,再向量检索排序,或者两者结合。

2025-04-27 15:10:19 242

原创 Milvus如何实现关键词过滤和向量检索的混合检索

Milvus 支持混合检索,即同时进行向量检索和基于关键词或其他属性的过滤。通过在查询时使用 `expr` 参数,你可以轻松地将关键词过滤与向量相似度检索结合起来,以实现更精确和高效的数据检索。

2025-04-27 14:19:43 453

原创 基于deepseek的模型微调

使用 DeepSeek 模型(如)进行微调,可以分为几个关键步骤,下面以 DeepSeek-LLM 为例说明,适用于 Q&A、RAG、聊天机器人等方向的应用。

2025-04-23 18:41:32 291

原创 大模型RAG的召回模式

模式描述特点应用场景稀疏召回关键词匹配快速、精准但语义弱传统检索稠密召回向量相似度语义强、可扩展QA/RAG混合召回稀疏+稠密提升Recall覆盖通用RAG多模态召回图文检索等支持多模态输入图文问答生成式召回LLM生成检索线索灵活、可控指令召回LLM控制检索流程可解释、复杂推理多跳QA/Agent。

2025-04-23 18:39:04 343

原创 rag搭建,是如何进行向量匹配检索的?

模块作用Embedding 模型把文本和问题转成向量向量数据库存储所有 chunk 向量 + 元信息相似度计算查询问题向量与数据库向量的“距离”Top-k 检索取出最相似的几个文本,拼接输入给 LLM。

2025-04-20 19:31:14 192

原创 AI大模型之模型幻觉

内在幻觉是指模型生成的文本在形式上通顺、语法正确,但其内部逻辑结构不一致或语义推理存在错误。此类幻觉不依赖外部知识或输入背景,即使在无事实参照的生成任务中也可能出现。外在幻觉是指模型生成的文本与外部事实、上下文输入或知识源不一致,即模型在已有语义输入(如上下文、文档、图像或知识库)条件下,仍生成了与之矛盾或无关的信息。

2025-04-20 18:55:31 138

原创 人工智能之矢量搜索报告

矢量搜索正在从文本扩展到图像、视频、音频等领域,并成为多模态 AI 系统的底层“感知引擎”。图像矢量搜索的研究与实践,是构建下一代智能搜索与生成系统的关键支柱。掌握其底层机制与工程最佳实践,对于构建可靠、高效的 AI 应用至关重要。

2025-04-20 18:43:09 399

原创 模型幻觉之内在幻觉和外在幻觉

模型幻觉指的是大型语言模型(LLMs)生成的内容与客观事实不符或者缺乏合理逻辑依据的现象。这是当前大模型应用中面临的一个关键问题,会严重影响模型输出的可信度和实用性。例如在问答系统中,模型可能会给出不存在的事件细节或者错误的知识信息。内在幻觉是指模型在生成内容时,由于自身知识理解和推理的局限,产生与已知事实冲突或者在语义逻辑上不合理的表述,不涉及外部知识检索。这种幻觉源于模型内部的参数和训练方式,使得它在处理输入时无法准确地表达真实信息。外在幻觉通常与RAG(检索增强生成)系统相关。

2025-04-15 13:38:40 116

原创 大模型之Hugging Face

Hugging Face 通过提供预训练模型、数据集、以及推理和训练工具,极大地简化了自然语言处理任务的开发。无论是初学者还是经验丰富的研究人员,Hugging Face 都为 NLP 项目提供了极大的便利。如果你正在进行自然语言处理或机器学习任务,Hugging Face 是一个非常值得关注的平台。

2025-04-14 23:12:07 140

原创 大模型之Transformers , PyTorch和Keras

- **Transformers** 是一种强大的架构,专为自然语言处理任务设计,提供了大量预训练模型,广泛应用于文本生成、机器翻译、文本分类等任务。- **PyTorch** 是一个灵活、动态的深度学习框架,适合研究和原型开发,尤其在计算机视觉和强化学习领域应用广泛。- **Keras** 是一个高层次的深度学习库,简化了模型构建和训练的流程,适合快速原型开发,通常与 TensorFlow 配合使用。

2025-04-14 23:09:06 603

原创 层归一化(Layer Normalization) vs 批量归一化(Batch Normalization)

层归一化和批量归一化都是,目的是让训练更稳定、收敛更快,但应用场景和工作方式大不相同。

2025-04-13 18:39:11 454

原创 transformer的基本结构和工作原理,多头自注意力机制的作用是什么,为什么使用位置编码?

Transformer 架构是现代大模型的基石,下面我从结构、原理、多头自注意力、位置编码四个方面做一个清晰的解释。Transformer 由 编码器(Encoder) 和 解码器(Decoder) 两部分组成:每个 Encoder Block 包含两层:加上:结构类似于 Encoder,但多了一层:以文本生成为例:注意力机制的核心是:当前词应该关注哪些其它词,通过加权求和的方式融合信息。公式核心:[Attention(Q,K,V)=softmax(QK⊤dk)V][ \text{Attention}(Q

2025-04-13 18:03:16 230

原创 如何对大模型进行优化,以提高其性能和效率?

对大模型进行优化,可以从多个层面入手,包括等方向。下面我从这几个维度详细展开,并列举常用的优化策略和工程实践。

2025-04-13 17:58:18 397

原创 如何评估大模型的性能?有哪些常用的评估指标?

评估大模型(如大语言模型 LLM)的性能是一个多维度的问题,常常需要结合多个指标从不同角度来考察模型的能力。

2025-04-13 17:54:59 345

原创 hive排序函数

ORDER BY: 全局排序,数据需要集中到一个节点,可能会影响性能。SORT BY: 局部排序,每个节点上进行排序,性能较好,但不能保证全局排序。: 根据某个字段将数据分发到不同的节点上,适用于分布式计算。CLUSTER BY: 类似于,但它同时会在每个节点上进行排序。在 Hive 中,除了常见的ORDER BYSORT BY和CLUSTER BY之外,还有一些其他的排序相关的函数和功能。除了常规的排序操作,Hive 中的窗口函数(如RANK()NTILE()LEAD()LAG()和。

2025-04-08 20:17:57 160

原创 机器学习之回归

回归分析是机器学习中的基本技术之一,广泛用于预测连续型变量。本文调研了线性回归、多项式回归、岭回归、Lasso回归及弹性网络回归,重点分析其数学原理、算法推导、求解方法及应用场景。

2025-03-24 15:30:50 218

原创 机器学习之条件概率

概率模型在各类机器学习任务中发挥着重要作用。EM算法适用于参数估计,MCMC可用于复杂分布采样,朴素贝叶斯和贝叶斯网络在分类和推理任务中具有优势,CRF和HMM适合序列建模,而最大熵模型则用于信息预测和分类。未来的研究可以结合深度学习进一步优化这些模型的性能。

2025-03-24 14:49:21 537

原创 语言大模型之BERT

BERT 采用 Transformer 编码器(Transformer Encoder),使用。来学习文本中的长距离依赖关系。不同于 LSTM 或传统 RNN,Transformer 允许。在 BERT 之前,许多 NLP 预训练方法(如 Word2Vec、GloVe)都是基于。,显著提升了自然语言理解(NLU)任务的表现。,导致模型无法充分利用句子中的全局信息。学习文本信息,从而更好地理解句子中的每个单词。,在 NLP 领域取得了革命性的突破。BERT 解决了这些问题,通过。

2025-03-21 09:50:05 259

原创 Hadoop 3.x中的zookeeper和JournalNode的作用

在Hadoop 3.x版本中,和的作用有所变化和增强,尤其是在HDFS高可用性(HA)架构和其他Hadoop组件的协作方面。继续在Hadoop 3.x中为集群提供协调服务,尤其是在HDFS的高可用性和YARN资源管理器的管理中,保证了集群节点之间的一致性和故障切换的顺利进行。主要用于为HDFS提供高可用性支持,确保NameNode的操作日志可以高效、可靠地同步和存储,使得在NameNode发生故障时,Standby NameNode能够快速恢复并接管工作。

2025-03-20 18:33:31 221

原创 调研报告:Hadoop 3.x Ozone 全景解析

Hadoop 3.x 中的 Ozone 以其全新的对象存储设计和分布式架构,从根本上解决了传统 HDFS 在处理海量小文件、元数据瓶颈以及云原生环境下的诸多问题。通过引入分布式 OM、容器化存储、数据副本与纠删编码机制,Ozone 不仅实现了高性能、高可用与可扩展性,而且在运维管理、安全性和生态集成方面展现出极大优势。面对未来数据量持续攀升及多样化应用场景的挑战,Ozone 正在不断优化自身设计,并与云原生技术、智能运维手段深度融合,为大数据存储和处理开辟出一条全新的发展路径。

2025-03-20 16:24:24 247

原创 AI大模型之量化

模型量化是指将神经网络中的权重、激活值及计算过程从高精度(如 32-bit 浮点数, FP32)转换为低精度(如 8-bit 整数, INT8),从而减少存储和计算负担,提高推理速度。

2025-03-20 14:53:07 88

Poseidon波塞冬日志搜索平台文档

可以看看

2022-10-10

详细解读DreamFusion:利用2D扩散实现文本到3D的转换 论文文档

详细解读DreamFusion:利用2D扩散实现文本到3D的转换 论文文档

2024-04-26

apache seatunnel支持hive jdbc

apache seatunnel支持hive jdbc

2023-10-30

鲸鱼优化算法(Whale Optimization Algorithm,WOA)剖析

鲸鱼优化算法(Whale Optimization Algorithm,WOA)剖析

2023-10-25

ubuntod安装datasophon问题记录

chkconfig命令

2023-10-10

Clickhouse调研

Clickhouse调研

2023-08-03

读取Excel多个Sheet数据(Java code)

Java实现读取Excel多个Sheet数据 测试

2023-08-01

seatunnel 支持hive jdbc

source { Jdbc { url = "jdbc:hive2://111.11.11.11:10000/ods_wjw" driver = "org.apache.hive.jdbc.HiveDriver" user = "hive" password = "hive" table = ods_wjw_jb_gxy_hz_glk query = "select a,b,c from ods_wjw_jb_gxy_hz_glk" fetch_size = 300 } }

2023-07-28

gbase免费安装包,8.6.2

gbase免费安装包,8.6.2

2023-06-06

gbase免费安装包以及驱动

gbase免费安装包以及驱动

2023-06-06

dataCollection安装jar包0.07版本

dataCollection项目在kettle基础开发的可视化任务调度系统,提供简单易用的操作界面,降低用户使用crontab调度的学习成本,缩短任务配置时间,避免配置过程中出错。系统对接webSpoon,支持在线编辑kettle脚本,通过数据整合功能,可同步资源库中已有的脚本,用户在创建完脚本之后,可通过系统任务管理,创建数据同步任务。

2023-01-16

hbase-manager安装包,已编译

部署网站https://gitee.com/weixiaotome/hbase-manager#1-%E5%B9%B3%E5%8F%B0%E7%AE%80%E4%BB%8B HBaseManager功能列表 namespace管理:包括namespace的创建、删除 HBase表管理:表创建、预分区建表(内置三种预分区方案)、表删除、表信息更改、表清空 列簇管理:列簇新增、删除、属性修改 标签管理:HBase表的标签管理 数据管理:HBase表数据的查询、新增、删除。 多集群管理:多集群切换。 监控功能:后续可能会考虑增加丰富的监控功能,以期待代替HBase本身的监控界面 WebShell:基于Web的HBase Shell (规划中) HQL: 以SQL的方式读写HBase集群中的数据 请求热点监控:集成hbase-hbtop的功能,图表展示RegionServer/Region/namespace/table的实时请求量 更多功能:......

2022-11-14

hbase-sdk的jar包

hbase-manager项目编译所需

2022-11-14

hbase-sdk的jar包

hbase-manager编译需要 如果你的HBase版本是1.x,可以使用这个jar包

2022-11-14

flink-shaded-hadoop-2-uber-3.0.0-9.0.jar

Flink sink cdh6.2 hadoop3.0.0 jar包

2021-04-16

数独android

3G千锋android游戏数独可运行,按照视频并解决问题

2014-08-04

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除