ChemDFM:开启化学研究智能化新纪元的专业大语言模型

论文名称:Developing ChemDFM as a Large Language Foundation Model for Chemistry
论文地址:https://arxiv.org/pdf/2401.14818

在人工智能迅猛发展的浪潮中,化学研究正经历着前所未有的变革。传统化学研究往往依赖于科学家的经验积累、反复实验以及对海量文献的手动筛选,不仅耗时费力,还难以应对日益复杂的研究需求。而如今,大语言模型的崛起为化学研究带来了新的曙光。

想象一下,当你在实验室里面对一个复杂的分子结构,想要快速了解它的性质、可能的反应路径时,一个能够理解化学专业术语、读懂分子符号、甚至能和你像同事一样探讨实验方案的AI助手立刻为你提供详细解答;当你为撰写论文需要查阅大量文献,从中提取关键信息时,这个AI助手能高效地帮你梳理文献脉络、总结研究成果。这不再是科幻想象,而是正在成为现实,而实现这一切的关键就是专为化学领域打造的大语言模型——ChemDFM。

化学研究的AI困境:从专用模型到通用需求

长期以来,人工智能在化学领域的应用主要集中在专用模型上。这些模型就像一个个专精于某一特定任务的“专家”,例如在分子性质预测方面,有模型能根据分子结构精准预测其各种化学和物理性质;在分子生成领域,也有模型可以设计出具有特定功能的新分子;在反应预测任务中,同样有模型能推测化学反应的产物。

然而,这些专用模型存在着明显的局限性。它们通常是为解决某一特定场景下的问题而训练的,模型与任务之间呈现出严格的一一对应关系。这就意味着,当研究场景发生变化,即使是处理高度相关的任务,这些模型也往往难以胜任。比如,一个擅长预测分子溶解度的模型,对于分子的反应活性预测可能就束手无策。

随着化学研究的不断深入,科研人员迫切需要一个更具通用性和效率的AI系统。这个系统应该能够处理现实场景中的多种化学任务,支持自由形式的人机协作。它需要具备全面的化学能力,既能理解化学专业知识,又能运用自然语言进行推理和交流,成为科研人员身边得力的研究助手甚至合作伙伴。这正是迈向化学人工通用智能的关键一步。

通用领域的大语言模型在自然语言处理方面取得了巨大成功,展现出了令人瞩目的任务泛化能力和自由对话能力。它们能够理解复杂的语言表达、进行逻辑推理、甚至运用工具解决问题。这些优势让人们看到了将其应用于化学领域的希望,有望打造出这样一个理想的AI化学研究助手。

但问题随之而来,通用领域大语言模型在训练过程中缺乏足够的化学领域知识。化学领域有其独特的语言和符号体系,比如分子可以通过SMILES(简化分子线性输入规范)、IUPAC名称和分子式等类似自然语言的符号来表示,但这些符号的含义和内在结构与自然语言有着本质区别。例如,在化学中,“CO”代表一氧化碳,而不是美国的科罗拉多州;“Co”代表钴元素,并非指公司;在SMILES符号中,“(CO)”通常代表羰基。通用大语言模型对这些分子符号的理解不足,严重限制了它们在解决化学问题时的适用性和性能。

因此,为通用大语言模型配备丰富的化学知识,打造一个真正适用于化学领域的专业大语言模型变得至关重要。ChemDFM应运而生,它的出现正是为了填补通用大语言模型在化学领域的空白。

ChemDFM的诞生:专为化学量身打造的训练之路

在这里插入图片描述

ChemDFM是以开源的通用领域大语言模型LLaMa-13B为基础发展而来的。为了让它具备专业的化学能力,研究团队通过两个关键阶段对其进行化学领域的专业化训练:领域预训练和指令微调。这两个阶段就像为LLaMa-13B铺设了通往化学专业领域的道路,让它逐步“学习”化学知识,获得分子识别、反应预测等能力。

领域预训练是ChemDFM构建化学知识基础的关键一步。通用领域大语言模型的训练数据虽然涵盖范围广泛,但在每个领域的深度上有所欠缺。这使得它们在自然语言理解和推理方面表现出色,却在深入的专业知识上有所不足,甚至会出现“幻觉”问题,即生成看似合理但不符合事实的内容。

为了弥补化学领域知识的不足,研究团队收集了丰富的化学知识语料用于领域预训练。这些语料主要来自化学知识最权威的两个来源:教科书和已发表的论文。教科书代表了化学领域广泛接受的知识和基本原理,而已发表的论文则提供了更详细、更新的化学知识,其中一些内容尚未被纳入教科书。
在这里插入图片描述

具体来说,研究团队从LibreTexts和Gold Books中精选了1.4K本化学书籍,还收集了2022年1月之前390万篇化学相关主题的开放获取论文。经过进一步的预处理和去重后,从教科书中获得了4900万 tokens 的数据,从已发表的研究论文中获得了340亿 tokens 的数据。

值得注意的是,为了保持LLM的通用领域知识和能力,研究团队在领域预训练阶段还加入了经过精心筛选的通用领域数据,包括维基百科、Arxiv论文、书籍、StackExchange问答、GitHub代码以及悟道语料库等。这样一来,ChemDFM在获取新的化学知识的同时,不会丢失原有的自然语言理解和推理能力。

在领域预训练的技术实现上,ChemDFM采用了流行的Megatron-DeepSpeed框架,并结合Zero-2优化技术。训练过程中使用AdamW优化器,设置(β₁,β₂)=(0.9,0.95)。模型每批处理400万 tokens,最大序列长度为6K,在余弦学习率调度器下,最大学习率为5e-5。这些技术参数的设置为ChemDFM高效、稳定地吸收化学知识提供了保障。

经过领域预训练后,ChemDFM已经具备了一定的化学知识基础,但还需要通过指令微调来使其更好地适应化学任务和交流场景。指令微调的数据主要包括两大类:以自然语言呈现的化学知识和专业的分子符号。

为了增强模型处理化学相关自然语言的能力,研究团队构建了一个包含超过100万个化学专业问答对的数据集。这些数据来自两个方面,一方面是已有的问答数据集,如ARC、PIQA、SciQ和HendrycksTest;另一方面是从互联网上收集的中学考试的开源试题,并构建了问答对,其中还包含关键要点或解题策略(如果有的话)。

化学知识的传递往往依赖于专业符号,这对LLM理解化学构成了关键挑战。在指令微调阶段,一个重要目标就是让ChemDFM熟悉这些专业符号。研究团队选择了SMILES作为分子的主要表示方式,因为它用一系列字母来呈现分子,在大多数情况下能保留丰富的结构信息,如分子构型和手性,而且其类文本的数据结构与LLMs具有高度兼容性。

为了帮助模型理解SMILES,研究团队使用了三种分子数据:

  • 分子描述(MD)和基于文本的分子设计(TBMD):数据集中包含了来自PubChem的所有SMILES-描述对,PubChem是一个包含超过1亿种化合物的网络规模化学数据库。模型被指令根据给定分子生成描述,或者反过来,生成与描述匹配的分子。对于描述超过两句话的样本,研究团队进行了重复处理,以进一步提高数据质量。
  • 分子性质预测(MPP):模型被指令预测给定分子的性质,这些数据基于广泛使用的分子性质预测基准MoleculeNet构建。
  • 反应完成(RC):模型还被指令完成化学反应用,其中一种或多种反应物/产物被随机掩盖,这些反应来自最大的开源化学反应数据库USPTO。

除了SMILES,研究团队还间接纳入了另外两种广泛使用的分子符号,即IUPAC名称和分子式。通过指令模型在这三种符号之间进行转换,例如根据分子的IUPAC名称预测其SMILES,反之亦然,使模型能够理解这些替代符号,这种数据在这项工作中被称为分子符号对齐(MNA)。

所有数据样本都采用(提示,返回)元组的形式,其中提示由对话格式、指令和示例输入组成,返回则是预期的输出。为了使自然语言指令更加多样化,研究团队使用GPT-4对所有任务的指令进行了改写,每个任务的不同指令数量在20到200之间。

同时,为了保持模型先进的自然语言理解能力,在ChemDFM的指令微调中还加入了大量通用领域数据,化学领域与通用领域的数据比例大致为1:2。指令微调采用全参数微调过程,使用流行的Deepspeed-Chat框架,并结合Zero-3优化技术。学习率设置为1e-5,全局批处理大小为256。为了鼓励模型更专注于响应需求,而不是记忆提示中的模式,研究团队只对返回的 tokens 进行梯度反向传播。训练过程同样使用AdamW优化器,设置(β₁,β₂)=(0.9,0.95),并采用余弦学习率调度器。
在这里插入图片描述

经过这样精心设计的训练过程,ChemDFM具备了同时处理多种化学任务的能力,并能用化学家的语言进行自由形式的对话,为化学研究中的人机协作奠定了基础。

实力验证:ChemDFM在各类化学任务中的卓越表现

为了全面评估ChemDFM在化学领域的能力,研究团队将其与多个通用LLM模型进行了对比,包括GPT-4、LLaMa-2和Galactica,它们分别代表了超大型通用LLM、中型通用LLM和专为科学领域微调的LLM。研究采用ChemLLMBench进行定量评估,同时对其自由形式协作能力进行了定性分析,重点考察其在化学相关对话处理方面的优势。

分子识别任务主要评估模型对分子的识别能力,包括名称预测和分子 captioning 两个系列任务。名称预测任务要求模型在不同的分子符号之间进行转换,包括SMILES到IUPAC名称(S2I)、IUPAC名称到SMILES(I2S)、SMILES到分子式(S2MF)以及IUPAC名称到分子式(I2MF)的转换。对于IUPAC名称和SMILES,在计算准确率之前对预测结果进行了标准化处理,而对于分子式,则只考虑完全匹配的情况作为正确答案。
在这里插入图片描述
从实验结果来看,大多数LLM,包括GPT-4,在名称预测任务中表现不佳,这表明它们对分子的理解有限。而ChemDFM在所有这些任务中都以显著优势超越了开源LLMs。在S2I任务中,ChemDFM的准确率为4.0,而GPT-4为0,LLaMa2-13B-chat和Galactica-30B更是为0;在I2S任务中,ChemDFM准确率达到11.0,GPT-4仅为1.2,其他两款开源模型同样为0;在S2MF和I2MF任务中,ChemDFM分别以73.0和51.0的准确率大幅领先于其他模型。这一出色表现证明了ChemDFM强大的分子识别能力,也验证了其专业化训练过程的有效性。

分子 captioning 任务进一步要求LLMs不仅能通过给定的SMILES符号识别分子,还要能用自然语言生成对该分子的简要描述。在这项任务中,使用传统的 captioning 指标如BLUE、ROUGE和METEOR在ChEBI-20的测试集上对模型性能进行评估。结果显示,ChemDFM的表现也远优于开源LLMs。更值得注意的是,GPT-4在十样本设置和零样本设置下的性能差异巨大,这表明GPT-4主要依靠其非凡的自然语言能力从给定的示例中学习,而其固有的分子识别能力相对较弱。相比之下,ChemDFM在没有示例帮助的情况下也能达到相当的性能,展示了其内在的分子识别能力。
在这里插入图片描述

文本-based分子设计任务用于评估LLM进行合格分子设计的效率。该任务与分子 captioning 任务相反,要求模型根据描述生成分子,即预测符合给定描述的分子的SMILES。评估使用两组指标,第一组衡量预测的SMILES与黄金SMILES的文本相似性,包括精确匹配、BLUE和Levenshtein距离;第二组指标衡量预测分子与黄金分子的化学相似性,包括预测的SMILES的有效性以及基于MACCS、RDK和Morgan指纹的FTS(指纹Tanimoto相似性)。
在这里插入图片描述

实验结果令人惊喜,ChemDFM不仅优于通用LLMs,在几乎所有指标上也超过了传统的特定任务专用模型。在精确匹配指标上,ChemDFM达到45.0,远高于任务专用模型MolXPT的21.5、Mol-Instruction的32.2以及通用模型GPT-4的2.0;在有效性指标上,ChemDFM为98.0,与专用模型相当;在MACCS、RDK和Morgan等化学相似性指标上,ChemDFM分别为0.922、0.871和0.798,均领先于其他模型。这一结果揭示了ChemDFM的两大优势:一方面,它在模型中有效地建立了SMILES符号与化合物化学性质之间的关系,这是其他LLMs所缺乏的;另一方面,ChemDFM受益于从LLaMa继承的扎实的自然语言理解能力,这是特定任务专用模型所不具备的。总之,ChemDFM构建了一个更全面的化学知识体系,使其能够超越通用模型和特定任务专用模型。

分子性质预测任务包含来自MoleculeNet的五个任务,分别是BACE、BBBP、HIV、ClinTox和Tox21。其中BACE和BBBP各包含一个平衡的二元分类任务,HIV包含一个不平衡的二元分类任务,ClinTox和Tox21分别包含两个和二十一个不平衡的二元分类任务。为了解决这些任务中的严重标签不平衡问题,采用了ROC曲线下面积(AUC-ROC)指标进行评估。
在这里插入图片描述

在数据拆分上,为了避免因分子相似性导致的信息泄露,同时增加任务难度,使评估更具挑战性和意义,研究团队采用了基于支架的垂直拆分方式。即首先根据分子的Bemis-Murcko支架表示对DeepChem库中的分子进行分组,然后根据这些组将数据集拆分为训练集和测试集,确保具有相同支架的分子不会同时出现在训练集和测试集中。

结果显示,ChemDFM在除了一个分子性质预测任务外的所有任务中都始终优于其他LLMs。在平均AUC-ROC得分上,ChemDFM为77.7,超过了GPT-4的59.3、LLaMa-2-13B-chat的42.5和Galactica-30B的71.8,虽然略低于任务专用模型MolXPT的83.8,但已经展现出了强大的分子性质预测能力。

反应预测和 retrosynthesis 任务旨在评估模型对反应的理解能力,包括产率预测(YP)、反应预测(RP)、试剂选择(RS)和 retrosynthesis(Retro)四种类型的任务。产率预测任务要求模型预测给定反应是否为高产率反应,基于Buchwald-Hartwig数据集和Suzuki-Miyaura数据集构建;反应预测任务要求模型预测给定反应的产物,使用USPTO-MIT数据集; retrosynthesis 任务重点是预测给定反应的反应物,基于USPTO-50K数据集构建;试剂选择任务则要求从候选列表中选择能使反应产率更高的适当反应物、溶剂或配体,基于Perera等人提出的数据集构建。评估指标均采用准确率。

从实验结果来看,ChemDFM在所有与反应相关的任务中性能都显著超过开源LLMs。与GPT-4相比,ChemDFM在4项任务中的3项表现更优,但在试剂选择任务上略逊一筹。经过仔细分析发现,试剂选择任务是多项选择题,要求模型从问题中列出的候选者中直接复制正确的SMILES。与反应预测和 retrosynthesis 等生成式问题相比,多项选择题减轻了模型从头生成分子的负担。GPT-4在遵循指令和直接复制相应SMILES方面表现更出色,而ChemDFM往往尝试生成新的答案,这可能是其在该任务上表现稍差的原因。

科研助手的实战能力:ChemDFM在文献阅读与实验设计中的应用

一个合格的AI研究助手不仅需要强大的化学技能,还需要具备用自然语言理解、推理和与研究人员交流的语言能力。研究团队在文献阅读和实验设计这两个化学研究人员常遇到的典型场景中对ChemDFM进行了测试。

阅读文献和其他技术论文是研究人员日常工作中不可或缺的一部分。研究人员经常会遇到新的概念或表达,阻碍他们对材料的理解。一个基于LLM的阅读伙伴或助手可以针对这些问题提供即时解释和答案。

为了防止信息泄露,研究团队基于2023年发表的化学论文构建问题,因为ChemDFM只从2022年之前发表的论文中学习知识,这确保了ChemDFM在训练过程中没有学习过答案,模拟了ChemDFM作为阅读伙伴或导师阅读新论文时的表现。

当问题涉及广泛已知的领域知识时,包括ChemDFM在内的所有LLMs都能提供不错的答案。但当问题涉及新分子和反应时,各模型的表现就出现了差异。LLaMa-2和Galactica主要依赖从记忆中检索知识,这可能导致在问题背景下出现许多正确但无关甚至误导性的知识点。GPT-4表现出基于提供的分子和/或反应回答问题的初级能力,能有效回答一些问题,但在涉及复杂分子的更复杂问题上则表现吃力,甚至会提出违反分子催化活性的方法。

相比之下,ChemDFM展现出整合基于记忆的知识同时考虑问题描述情境的能力,提供与问题高度相关的关键点。在答案的准确性、相关性和整体质量上,ChemDFM在很大程度上优于包括GPT-4在内的其他LLMs,特别是在涉及复杂分子的问题上,展示了对# ChemDFM:开启化学研究智能化新纪元的专业大语言模型(续)
分子和反应更好的理解。除了呈现关键点外,ChemDFM还努力扩展解释并详细说明所查询反应的机理或提出的解决方案,尽管在某些情况下偶尔会导致不准确的答案,但这也体现了其主动推理的能力。

在一个关于Catellani型反应中降冰片烯作用的问题中,ChemDFM准确捕捉到“区域选择性”这一关键点,并提供了全面的答案,甚至尝试详细描述反应背后的机理,虽然存在 minor 错误,但整体表现出色。而Galactica几乎无法回答该问题,LLaMa-2则遗漏了答案的关键点。对于Diels-Alder反应的区域选择性问题,只有ChemDFM成功回答了关键要点,即区域选择性的结果,GPT-4虽然对Diels-Alder反应和区域选择性进行了详细介绍,却未能回答具体的区域选择性结果,LLaMa-2仅给出了可能影响区域选择性的因素,并未正面回答问题。

当面对基于2023年新发表论文构建的关于新分子和反应的问题时,ChemDFM的优势更加明显。在关于NaH在特定反应中作用的问题中,ChemDFM不仅正确识别了“去质子化”这一答案的关键点,还提供了近乎正确的机理描述;Galactica虽识别出关键点,却未能提供其他有用信息;LLaMa-2未能识别问题中提及的反应,其关于NaH的大部分信息正确但与该反应无关;GPT-4虽识别出关键点,但仅对作用机理进行了粗略描述。

在增强新型催化剂酸性的问题中,关键是“在芳香环上引入吸电子基团”,因为这种方法有可能在保持分子催化能力的同时增加酸性。在参与测试的LLMs中,只有ChemDFM成功回答了这一关键点,其他模型要么未能提供任何具体解决方案,要么给出的解决方案会破坏分子的催化能力。这些实例充分证明了ChemDFM在处理新分子和反应相关问题时的强大能力。

在假设生成和实验设计阶段,一个知识渊博、随时可用且耐心的讨论伙伴对研究人员来说非常宝贵。ChemDFM在这一领域也展现出了巨大的潜力,能够以AI研究伙伴的身份通过自由形式的对话协助研究人员。

在一个受文献启发的场景中,研究人员旨在选择性氧化分子的两个羰基之一。ChemDFM最初给出的解决方案会导致两个羰基都被氧化,但在研究人员指出错误并提出质疑后,ChemDFM承认了错误,并提出了两种可能的策略:使用较弱的氧化剂/条件或引入保护基。当研究人员决定使用保护基时,ChemDFM提供了详细的建议,包括可行的试剂和反应条件。在整个对话过程中,ChemDFM展现出了在理解(第一轮)、纠错(第二轮)和详细阐述(第三轮)等方面的良好能力,彰显了其掌握化学和自然语言的有效性。

另一个对话场景中,研究人员询问LiCl在特定反应中的作用,ChemDFM最初正确识别出LiCl作为催化剂,但误判了反应类型。在研究人员指出错误并提供反应关键细节后,ChemDFM纠正了错误,并提供了更多关于反应过程的细节。当研究人员进一步询问获得最终产物所需的后处理步骤时,ChemDFM成功捕捉到问题的关键点并给出了正确答案。

在基于另一篇文献的对话中,ChemDFM最初对新形成的碳 - 碳键的位置和反应类型的判断部分正确。在人类的纠正帮助下,ChemDFM意识到错误并进行了修正。随后,研究人员在未明确说明系统当前分子组成或重述先前反应的情况下,询问了后续反应,ChemDFM能够从对话历史中推断出相关信息并正确回答问题。

在这些对话中,ChemDFM展现出了处理不可预见情况、纠错以及从对话历史中推断信息的良好能力。这些能力得益于ChemDFM对自然语言和化学语言的双重理解,这使得ChemDFM与研究人员之间建立了通用的语言协议,为有意义的人机协作奠定了基础。

化学大语言模型的进阶之路:ChemDFM的创新与局限

在化学领域利用大语言模型解决问题的研究中,主要存在两种策略。一种是将LLMs视为强大的基础模型进行多任务训练,但忽略了它们在自然语言理解和推理方面的最大优势。在这种框架下设计的模型仅限于解决它们所训练的特定任务,失去了处理未见过的任务或进行自由形式人机协作的能力。另一种策略则利用LLMs强大的自然语言理解和推理能力,直接使用它们来处理用自然语言描述的复杂化学任务。然而,大多数这类研究都受到通用LLMs缺乏对化学语言和知识固有理解的限制。

ChemDFM的创新之处在于,它认为在化学领域有用的LLM必须同时学习和推理通用领域知识和化学知识。通过为通用领域LLMs配备特定任务化学模型的丰富化学知识,ChemDFM在这方面取得了有希望的结果。这种策略在其他多个科学领域开发专业LLMs方面也取得了成功,例如Med-PaLM和PMC-LLaMa是专为生物学和医学领域设计的专业LLMs,ChatDoctor和DrugChat也提供了专为医学领域设计的LLMs,但侧重于医疗咨询和药物发现。其他领域特定的LLMs还涉及教育、材料科学和地理学等领域。值得注意的是,这些工作大多只关注自然语言,而像化学中的SMILES这样与自然语言有显著差异的领域特定语言往往被忽视,ChemDFM则着重解决了这一问题。

尽管ChemDFM在多个化学任务中表现出色,但仍存在一些局限性。在名称预测任务中,虽然ChemDFM远超其他开源LLMs,但整体准确率仍有较大提升空间,特别是在SMILES与IUPAC名称的相互转换上,准确率分别仅为4.0和11.0,这表明模型在处理复杂分子符号转换方面还有待加强。

在试剂选择任务中,ChemDFM的表现不如GPT-4。这主要是因为试剂选择任务多为多项选择题,要求模型从候选列表中直接复制正确的SMILES,而ChemDFM更倾向于生成新答案,在遵循特定指令进行选择方面存在不足。

在一些复杂的分子机理描述和新分子命名上,ChemDFM偶尔会出现错误。例如在对某些反应机理的详细阐述中,会存在 minor 的不准确之处;在提及新分子时,给出的IUPAC名称也可能存在错误,这说明模型在深度化学知识的精确掌握和复杂分子的准确表征方面仍有提升的空间。

此外,虽然ChemDFM在处理未见过的任务和新分子反应方面表现出一定能力,但在面对极其复杂的、跨多个化学子领域的综合问题时,其性能可能会受到限制。而且,模型的训练数据截止到2022年1月之前的文献,对于2022年之后出现的全新化学理论、方法或反应类型,可能无法及时学习和掌握,需要通过持续的更新和再训练来保持其先进性。

结语:ChemDFM引领化学研究新范式

ChemDFM作为一个从通用LLM发展而来的专业LLM,通过化学领域知识的预训练和指令微调,在化学研究中展现出了巨大的潜力。定量评估表明,ChemDFM对分子符号有深刻的理解,对化学知识有强大的推理能力,在分子设计、反应分析等广泛的化学任务中表现出色。在文献阅读和实验设计等场景中,ChemDFM展示了运用化学和自然语言通过基于对话的自由形式人机协作协助研究人员的巨大潜力。

ChemDFM的出现为化学研究带来了新的范式,它不仅是一个高效的化学知识查询和处理工具,更是研究人员可以信赖的合作伙伴。它能够减轻研究人员在文献筛选、数据处理、实验设计等方面的负担,帮助研究人员更快地获取关键信息、提出合理假设、优化实验方案,从而加速化学研究的进程。

未来,随着技术的不断进步和训练数据的持续丰富,ChemDFM有望在以下方面得到进一步发展。首先,提高在复杂分子符号转换、精确机理描述等方面的准确性,增强模型对化学知识的深度理解和精确运用能力。其次,拓展模型的应用范围,使其能够处理更多跨领域的复杂化学问题,为材料科学、药物研发、环境化学等多个相关领域提供更强大的支持。再者,建立更高效的模型更新机制,使ChemDFM能够及时学习和吸收最新的化学研究成果,保持其在快速发展的化学领域中的领先地位。

同时,ChemDFM的成功也为其他领域专业大语言模型的开发提供了宝贵的经验。通过结合通用大语言模型的强大能力和特定领域的专业知识,有望在更多学科和行业中打造出类似的专业AI助手,推动各领域的智能化发展。

总之,ChemDFM开启了化学研究智能化的新纪元,它的发展和应用将深刻改变化学研究的方式,为化学领域的创新和突破注入新的动力。我们有理由相信,在ChemDFM等先进AI技术的助力下,化学研究将迎来更加广阔的前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

这是Jamon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值