- 博客(342)
- 收藏
- 关注
原创 python Lark教程 5)构建 DSL(领域专用语言)
DSL(领域专用语言)是专门为某一类问题领域而设计的语言。它不同于 Python、Java 这种通用编程语言(GPL, General Purpose Language),DSL 的目标是用简化的语法表达领域知识。内部 DSL:嵌入到现有语言中的 DSL。例如 SQLAlchemy 通过 Python 表达 SQL。外部 DSL:独立存在的语言,需要解析器。比如 SQL、正则表达式。我们来设计一个简单的 DSL,目标是实现一个配置语言,能用类似自然语言的方式表达变量、条件和操作。
2025-09-01 09:30:16
82
原创 python Lark教程 3)抽象语法树(AST)与 Transformer
是由 Lark 生成的默认结果。直接反映了语法规则的匹配过程。层次非常详细,每个非终结符、终结符都会被保留下来。1 + 2 * 3addNUMBER 1mulNUMBER 2NUMBER 3这里的addmulNUMBER全都来自语法规则。
2025-09-01 08:29:10
408
原创 python Lark教程 2)基础语法与解析
在第一章中,我们已经写过一个小巧的四则运算解析器。那只是“冰山一角”。如果你想真正掌握 Lark,就必须深入理解它的 语法规则。本章将带你逐步认识 Lark 的语法系统:Lark 的语法采用接近 EBNF(扩展巴科斯范式) 的形式定义规则。一个语法文件通常包含以下几个部分:这里我们可以看出:在 Lark 中,终结符用大写字母命名。它们通常用正则表达式来定义。示例:定义数字特殊的 Lark 内置了很多常用的 Token,可以直接导入:忽略空格这样就不用在语法里到处写空格规则了。非终结符用小写
2025-08-31 20:57:19
453
原创 python Lark教程 1)简介与安装
| term?| factor?%ignore WSstart是入口规则。expr定义了加减法。term定义了乘除法。factor定义了数字和括号。%import表示引入内置的通用规则。%ignore WS表示忽略空格。
2025-08-31 20:53:38
348
原创 Python RDKit化学信息库 6)分子反应建模
在化学信息学和药物化学中,分子反应建模是非常重要的一部分。它不仅可以帮助研究人员模拟和预测化学反应的结果,还能用于虚拟合成、反应库构建和合成路径探索。RDKit 提供了丰富的 API 来处理基于 SMARTS 的反应建模,使得化学家能够在 Python 环境下高效地进行分子反应模拟。
2025-08-31 10:00:14
226
原创 Python RDKit化学信息库 5)分子计算
在药物设计和化学信息学中,分子的和是最常用的计算指标。RDKit 提供了丰富的函数,可以快速计算分子相关的数值信息,用于建模、聚类和筛选。
2025-08-31 09:49:06
191
原创 Python RDKit化学信息库 3)分子操作与查询
分子不仅仅是静态的结构,在药物化学和虚拟筛选中,常常需要修改分子、提取子结构,或者检测分子是否含有某种特定官能团。RDKit 的Chem模块提供了丰富的 API 用于和。
2025-08-31 09:41:43
170
原创 Python RDKit化学信息库 2)分子基本信息获取
在化学信息学中,获取分子的基础信息是进一步建模、计算与筛选的前提。RDKit 提供了强大的 API,可以轻松查询分子式、分子量、原子属性、键属性以及环结构。
2025-08-31 09:40:38
166
原创 Python RDKit化学信息库1)基础入门
RDKit 是一个开源的化学信息学(Cheminformatics)工具包,主要用于分子表示、分子计算、化学反应建模、分子可视化以及药物化学分析。它的核心库用C++编写,提供了Python 接口,因此可以轻松集成到科学计算与机器学习工作流中。药物化学(药物候选分子的筛选与优化)化学信息学(分子指纹与相似度计算)机器学习与 QSAR 模型构建分子可视化与库管理。
2025-08-31 09:39:27
108
原创 多模态语言模型在化学与材料研究中的挑战与突破:MaCBench基准的深度解析
MaCBench基准的发布,标志着化学与材料领域的AI研究进入了“理性发展”阶段。它让我们清醒地认识到,当前多模态语言模型虽然在某些任务中表现出色,但距离成为真正可靠的科研伙伴还有很长的路要走。模型的“偏科”不是缺陷,而是提醒我们:AI的价值不在于取代人类,而在于与人类形成互补——AI处理重复性的感知任务,人类专注于创造性的科学推理。未来的研究方向将围绕“能力泛化”和“可解释性”展开:一方面,通过合成数据和跨模态训练提升模型的科学推理能力;另一方面,通过模块化设计和置信度评分增强模型的可靠性。
2025-08-28 14:24:08
981
原创 正则表达式2)Python 中的正则表达式
在 Python 中,正则表达式的功能由标准库 re提供。import re就可以使用所有正则操作。函数作用从字符串开头匹配模式在字符串中搜索第一个匹配项返回所有匹配结果的列表返回迭代器,每个元素是一个匹配对象替换匹配结果按照匹配模式拆分字符串编译正则,提高性能,并重复使用这一章我们学习了 Pythonrematchsearchfindallsubsplitfinditer和 Match 对象的详细用法compile提升性能标志位re.Ire.Sre.M等分组、命名组、反向引用。
2025-08-28 09:11:01
454
原创 正则表达式1)基础语法
正则表达式(Regular Expression,简称 Regex 或 RE)是一种描述字符串模式的特殊语法。你要在一大段文字里寻找什么样的字符序列;你想把哪些部分提取出来;哪些内容需要被替换。很多文本处理、数据清理、日志分析、网页抓取等场景里,正则表达式都能发挥巨大作用。📌常见应用场景检查邮箱地址匹配手机号:11 位数字,以 1 开头清理HTML 标签:如→hello在日志文件中提取 IP 地址、时间戳、请求路径在自然语言处理中分词、提取特定词语👉 你可以把正则看作一种小型编程语言。
2025-08-28 09:00:22
256
原创 突破LLM记忆瓶颈:MemoryAgentBench如何重新定义智能体记忆能力评估?
∞Bench-Sum:改编自∞-Bench的摘要任务,文本长度172k tokens(替换实体的小说),智能体需在接收增量文本后,生成1000-1200字的摘要,评估对内容的全局整合能力。与传统摘要任务不同,智能体无法回看完整文本,只能依赖逐步积累的记忆。
2025-08-26 09:48:13
583
原创 LLF-Bench:让AI像人类一样从语言反馈中学习的全新基准
LLF-Bench 的推出标志着 AI 学习从 “奖励驱动” 向 “理解驱动” 的重要转变。这一转变不仅关乎技术进步,更触及 AI 发展的核心问题 —— 如何让机器更自然、更高效地与人类协作和学习。在 LLF 范式下,AI 系统不再是需要专家精心设计奖励函数的黑箱,而是能通过日常语言与人类交流、从反馈中学习的合作伙伴。这种转变将极大扩展 AI 的应用场景,使智能系统能在教育、医疗、家庭服务等更贴近人类生活的领域发挥作用。
2025-08-24 13:28:12
734
原创 解锁大语言模型的优化潜能:方向反馈如何重塑LLM优化范式
The Importance of Directional Feedback for LLM-based Optimizers》一文的研究成果不仅推动了LLM优化技术的发展,更在深层次上重新定义了人机协作的边界。通过有效的方向反馈,人类可以更精准地引导LLMs的优化过程,实现“人类指导+机器执行”的高效协作模式。在教育领域,这意味着个性化学习系统可以根据学生的具体表现提供精准反馈,帮助LLM优化教学内容和方法;在创意设计领域,设计师可以通过方向反馈引导LLM生成更符合需求的作品;
2025-08-24 09:27:01
1016
原创 用LLM优化器革新并行程序性能:Agent-System接口如何让高性能计算触手可及
论文名称:Improving Parallel Program Performance with LLM Optimizers via Agent-System Interfaces论文地址:https://arxiv.org/pdf/2410.15625在当今的科学探索领域,高性能计算已成为推动发现的核心引擎。从模拟复杂的物理系统到破解生物分子结构,超级计算机正以前所未有的算力支撑着人类知识的边界拓展。
2025-08-24 08:10:59
630
原创 Trace:下一代自动微分框架,让AI系统实现端到端生成式优化
Trace框架代表了优化技术的一次重要飞跃,它将自动微分的思想扩展到了更广泛的计算工作流领域。通过引入OPTO范式和基于LLM的生成式优化器,Trace实现了对异构参数、丰富反馈和复杂目标的端到端优化。实验结果表明,这种通用优化框架在数值优化、超参数调优、提示词优化和机器人控制等多个领域都能取得优异性能。Trace不仅为研究者提供了一个开放的研究平台,也为工程师开发自适应AI系统提供了强大工具。
2025-08-22 07:37:18
790
原创 ChemDFM:开启化学研究智能化新纪元的专业大语言模型
ChemDFM作为一个从通用LLM发展而来的专业LLM,通过化学领域知识的预训练和指令微调,在化学研究中展现出了巨大的潜力。定量评估表明,ChemDFM对分子符号有深刻的理解,对化学知识有强大的推理能力,在分子设计、反应分析等广泛的化学任务中表现出色。在文献阅读和实验设计等场景中,ChemDFM展示了运用化学和自然语言通过基于对话的自由形式人机协作协助研究人员的巨大潜力。ChemDFM的出现为化学研究带来了新的范式,它不仅是一个高效的化学知识查询和处理工具,更是研究人员可以信赖的合作伙伴。
2025-08-21 21:15:44
542
原创 VerilogEval:解锁大语言模型硬件设计能力的基准框架
VerilogEval的推出为大语言模型在硬件设计领域的应用评估提供了一个全面、可靠、自动化的基准框架。通过精心构建的评估数据集、文本化的问题描述、自动化的测试环境和科学的评估指标,VerilogEval不仅能够准确衡量大语言模型的Verilog代码生成能力,还为模型的优化和改进提供了明确的方向。基于合成数据的监督微调实验结果表明,通过合理的微调策略,大语言模型在Verilog代码生成任务上的性能可以得到显著提升,甚至达到与GPT-3.5相当的水平。这一发现为大语言模型在硬件设计领域的实际应用奠定了基础。
2025-08-20 15:52:15
689
原创 LLM4EDA:大语言模型驱动电子设计自动化的新浪潮
LLM4EDA正处于快速发展的初期阶段,已在辅助聊天、代码生成、验证分析等场景展现出巨大价值,为芯片设计带来了效率革命。随着研究的深入,逻辑综合、物理设计等核心环节的智能化水平将持续提升,多模态建模和PPA长链反馈等技术突破将进一步推动全流程自动化。然而,挑战依然存在:领域数据的稀缺性、模型幻觉的规避、复杂设计的理解深度等问题仍需解决。但可以预见,随着大语言模型技术的不断演进和EDA领域知识的深度融合,LLM4EDA必将成为芯片设计的核心驱动力,大幅降低设计门槛,加速芯片创新,为半导体产业注入新的活力。
2025-08-20 13:22:24
902
原创 大语言模型已是“超级化学家“?ChemBench基准框架揭秘LLM化学能力的真相
论文名称:Are large language models superhuman chemists?论文地址:https://arxiv.org/pdf/2404.01475?在当今科技飞速发展的时代,大语言模型(LLMs)正以前所未有的速度渗透到各个学科领域。从通过美国医师资格考试到自主设计化学实验,这些模型展现出了令人惊叹的跨界能力。然而,在化学这门需要精确推理、丰富知识和敏锐直觉的学科中,LLMs的真实实力究竟如何?它们真的能超越人类化学家吗?
2025-08-20 12:31:47
774
原创 大语言模型如何重塑化学与材料科学研究:从预测到创新的范式转变
Leveraging large language models for predictive chemistry》的研究成果标志着化学与材料科学研究迈入了新的时代。大语言模型以其独特的知识迁移能力、数据效率和易用性,打破了传统机器学习在化学领域的局限,为从小分子设计到材料开发的全流程提供了智能支持。这项研究最深远的意义在于重塑了化学研究的方法论。未来,查询预训练语言模型可能成为研究启动的常规步骤,就像今天的文献检索一样自然。研究者可以快速获得基于集体知识的初步预测,为实验设计提供起点;
2025-08-20 07:46:35
971
原创 大语言模型在化学领域的能力边界与应用前景:NeurIPS 2023重磅研究深度解析
这项NeurIPS 2023的研究首次系统勾勒出大语言模型在化学领域的能力图景,既揭示了GPT-4等模型在文本关联任务中的显著优势,也暴露了其在分子结构理解上的根本局限。研究构建的基准框架为未来化学AI的发展提供了关键参考,而发现的上下文学习规律和模型缺陷则为针对性优化指明了方向。随着LLMs的持续进化和化学专用优化技术的发展,我们有理由期待这些模型成为化学研究的强大辅助工具,加速药物发现、材料创新和绿色化学的突破。
2025-08-20 07:12:04
593
原创 Mem0记忆系统的核心引擎:Memory类的架构设计与实现哲学
Memory类不仅仅是一个记忆存储的实现,更是现代AI系统架构设计的典范。它通过精妙的双模式设计、智能的记忆处理、完善的监控体系和前瞻的扩展设计,为我们展示了一个生产级记忆系统应该如何构建。从代码的每一个细节中,我们都能看到工程团队的深思熟虑:如何平衡灵活性与性能,如何处理并发与一致性,如何设计接口与实现。这些经验不仅适用于记忆系统,更为整个AI基础设施的建设提供了宝贵的参考。
2025-08-19 09:05:30
753
原创 Mem0:革命性AI记忆系统的架构深度解析
解耦设计:通过抽象接口和工厂模式实现高度解耦扩展性:插件化架构支持无限扩展可维护性:清晰的模块边界和单一职责原则性能优化:多层次优化确保工业级性能开发者体验:简洁的API设计和完善的文档Mem0不仅仅是一个记忆系统,更是一个展示如何构建现代AI应用的典范。它的架构设计为AI基础设施的开发提供了宝贵的参考,展示了如何通过优秀的软件工程实践来解决复杂的AI挑战。通过深入研究Mem0的代码库,我们可以看到优秀架构设计的力量:它能够让复杂的系统变得简单,让难以维护的代码变得优雅,让性能瓶颈成为过去。
2025-08-19 08:57:23
552
原创 Mem0:重新定义AI代理的长期记忆能力——构建生产级智能对话系统的突破
论文名称:Mem0: Building Production-Ready AI Agents with论文地址:https://arxiv.org/pdf/2504.19413在当今的人工智能领域,大型语言模型(LLMs)已展现出非凡的上下文连贯响应生成能力。然而,它们固有的固定上下文窗口限制,却成为了在长时间多会话对话中维持一致性的巨大障碍。
2025-08-19 08:11:25
1144
原创 Coscientist:大语言模型驱动的化学研究自动化革命
论文名称:Autonomous chemical research with large language models论文地址:https://www.nature.com/articles/s41586-023-06792-0在科学研究的漫长历程中,人类从未停止过对效率与突破的追求。从实验室里科学家手动记录实验数据的艰辛,到自动化设备的逐步应用,每一次技术革新都推动着科研的进步。而今,随着人工智能技术的飞速发展,一场更为深刻的变革正在化学研究领域悄然发生。
2025-08-18 13:34:25
1347
原创 深度解析ChemAgent的记忆系统:MemoryDB的设计哲学与工程实践
MemoryDB不仅是一个技术实现,更是对记忆在智能系统中作用的深刻思考。它通过现代向量数据库技术,构建了一个既能精确检索又能模糊联想的记忆系统,为AI代理提供了持续学习与适应的能力。在这个系统中,每一个任务执行都成为未来智慧的种子,每一次失败都转化为宝贵的经验财富。这种设计哲学体现了对人工智能长期发展的深思熟虑:真正的智能不仅需要强大的计算能力,更需要能够从经验中学习、从失败中成长、从记忆中创新的能力。
2025-08-18 08:23:44
685
原创 ChemAgent计划执行系统:AI化学助手的智能决策引擎深度解析
ChemAgent的计划执行系统代表了AI规划技术的最新成就。它不仅仅是一个化学问题的求解器,更是一个能够学习、适应、改进的智能决策伙伴。通过深入分析其架构设计、算法实现和工程实践,我们看到了AI系统从"被动响应"向"主动规划"的范式转变。这种转变不仅提升了问题求解的效率和质量,更重要的是为AI系统在教育、科研、工业等领域的应用开辟了新的可能性。在这个智能规划的新纪元,ChemAgent为我们展示了AI如何真正成为人类专家的得力助手,如何通过持续学习和改进来不断提升自己的能力。
2025-08-18 07:30:27
997
原创 ChemAgent:一个革命性的化学问题智能求解系统的深度解析
ChemAgent不仅仅是一个技术产品,更是智能教育发展历程中的一个重要里程碑。它展示了AI如何真正理解科学、如何有效教学、如何持续学习。通过深度分析其架构和实现,我们看到了未来教育的无限可能。这个系统的真正价值不在于它能解决多少化学问题,而在于它为教育智能化提供了一个可扩展、可复用的框架。从化学到物理,从数学到生物,这种智能教育助手将彻底改变我们学习和理解科学的方式。
2025-08-17 18:08:20
951
原创 ChemAgent:让大语言模型成为化学推理专家的自我进化框架
论文名称:CHEMAGENT: SELF-UPDATING LIBRARY IN LARGEING论文地址:https://arxiv.org/pdf/2501.06590在人工智能飞速发展的今天,大语言模型(LLMs)在诸多领域展现出了惊人的能力。然而,在化学推理这一需要复杂多步骤计算和精准领域知识的任务中,LLMs却常常力不从心。计算错误、公式误用、单位转换失误等问题屡见不鲜,严重制约了其在化学研究、药物 discovery 和材料科学等关键领域的应用。
2025-08-17 12:33:02
671
原创 AGENT KB:打破AI智能孤岛,构建跨域知识共享新范式
在摘要基于检索中,混合方法始终优于单一方法策略,在GAIA Level 1任务上达到83%的准确率,在SWE-bench lite上达到37%。这种性能优势在Level 1和Level 2任务中尤为明显,混合检索比纯语义方法提高了多达9个百分点。AGENT KB代表了AI智能体系统发展的一个重要里程碑,它通过构建结构化的知识抽象和双阶段推理机制,打破了智能体之间的经验壁垒,实现了跨域知识的有效共享和重用。实验结果充分证明了这一框架在提升AI系统问题解决能力方面的显著效果,特别是在复杂推理和专业领域任务中。
2025-08-17 11:11:59
770
原创 A-MEM:重新定义LLM智能体的记忆系统——动态、互联与进化的革命性突破
A-MEM代表了LLM智能体记忆系统发展的重要里程碑。通过借鉴Zettelkasten的知识组织智慧,结合LLM的语义理解能力,它实现了记忆系统从静态存储到动态演化的质变。动态组织:无需预定义结构,记忆按语义自主组织智能关联:通过LLM驱动的链接生成建立有意义的知识网络持续演化:历史记忆随新经验不断更新和深化实验结果充分证明,A-MEM在各种任务类型和模型上均能显著提升性能,尤其在需要复杂推理和长期上下文的场景中表现突出。同时,其高效的计算成本和优异的扩展能力为实际部署奠定了基础。
2025-08-17 10:02:26
637
原创 AFlow优化器深度解析:智能工作流自动进化的核心引擎
AFlow将工作流优化问题转化为代码空间的搜索问题。操作符的选择和组合控制流结构(顺序、条件、循环)数据流设计提示词的优化AFlow的优化器代表了智能系统设计的未来方向——让AI自己发现和改进解决问题的方法。通过蒙特卡洛树搜索与大型语言模型的深度融合,AFlow实现了工作流的自动化进化,不仅大幅提升了任务性能,更重要的是开创了一种全新的AI系统开发范式。这种"AI设计AI"的方法将深刻改变我们构建智能系统的方式,从人工设计特征和架构,转向让机器自动发现和优化最优的解决方案。
2025-08-16 10:07:29
741
原创 AFlow框架深度解析:架构全景,核心组件,实现机制与应用案例
AFlow的核心理念是"用机器努力替代人工努力"。效率瓶颈:手工设计工作流需要大量专家时间和反复试验性能天花板:人类专家的经验存在认知局限,难以发现更优的工作流结构适应性不足:针对不同任务需要重新设计工作流,缺乏通用优化框架通过自动化工作流生成和优化过程,AFlow不仅在多个基准测试中超越了手工设计的工作流,还展现出了发现新颖工作流模式的潜力。操作符的选择和排列每个操作符的参数配置节点间的连接关系MATH数据集:从42.5%提升到58.2%HumanEval:从67.0%提升到82.6%
2025-08-16 09:11:21
565
原创 CREATOR:让大语言模型从工具使用者升级为工具创造者的革命性框架
论文名称:CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models论文地址:https://arxiv.org/pdf/2305.14318在人工智能飞速发展的今天,大语言模型(LLMs)如GPT-3、ChatGPT和GPT-4已经展现出了令人惊叹的能力。它们在自然语言处理、代码生成和上下文学习等领域取得了显著进展,但在处理复杂问题时仍面临诸多限制。
2025-08-15 09:31:37
600
原创 ToolGen:重新定义大语言模型的工具使用范式——从检索到生成的革命性突破
论文名称:TOOLGEN: UNIFIED TOOL RETRIEVAL AND CALLING VIA GENERATION论文地址:https://arxiv.org/pdf/2410.03439在人工智能飞速发展的今天,大语言模型(LLMs)已展现出处理自然语言、生成文本等强大能力。然而,在与外部工具交互以自主完成复杂任务方面,传统方法却存在诸多局限。当工具数量增长到数万级别时,现有工具检索与执行方法的效率问题愈发凸显。
2025-08-15 09:18:46
625
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人