前言
本人大数据专业初入大三刚刚接触机器学习这一课程,教材是最典型的西瓜书,第一次作业当然就是利用本专业语言多功能python语言结合书内容尝试自己构建P-R曲线以及延伸指标曲线。当然初入一些算法和机器学习的一些库还不是很熟练掌握,有待提升自己的编程结合能力。在此领域本人有诸多不明确疑问,可能文章会有些许错误,望大家在评论区指正,本篇文章错误将会不断更正维护。
具体代码实现参考:Friedman检验和Nemenyi检验,测试以及python实现_catEyesL的博客-CSDN博客_nemenyi检验
提示:以下是本篇文章正文内容,下面案例可供参考
一、Friedman检验
在很多时候,我们会在一组数据集上对比多个算法的性能。当有多个算法参与比较时,常用基于算法排序的Friedman
检验。我们可以给出多个数据集如D1、D2、D3、D4.....Dn等对算法A1、A2.....An进行比较。使用评估方法得到每个算法在每个数据集上的测试结果,然后在每个数据集上根据测试性能由好到坏排序,并赋予序值1,2,3....;若算法的测试性能相同,则平分序值。