ReduNet: A White-box Deep Network from the Principle 学习

最近在学习马毅老师的 NeurIPS 2020 中稿文章 MCR2,当时引起很多的报告,并且也上了热搜。抱着看一看的态度,认真学习了几篇核心的文章,并进行理解。

作为 ReduNet: A White-box Deep Network from the Principle 的前置文章之一的,Deep Networks from Optimizing Rate Reduction,首先对其进行了学习。

下面几个博客为本文的引申,分别对率失真函数以及文章代码进行了详细的学习:

  1. ReduNet 中的一些原理 及 The Rate-Distortion Function
  2. 率失真理论(RATE DISTORTION THEORY)
  3. ReduNet 代码解读【Numpy 版本】

文章考虑的问题是针对分类问题,如何能够使得分类更加准确。使用的方法考虑到了数据的压缩与表示,非常类似对比学习的想法,缩小一个类别内的距离,并且扩大不同类别间的距离。通过把数据点映射成特征,令不同类的特征间隔更远,同类的特征相聚更紧密。而为了达到这样的目的,可以使用核函数、神经网络等各种映射,最终都是为了能映射出符合这两个条件的数据表示。


文章中定义了一个用于衡量数据的方法,提出用一种使用编码长度的公式来测量这个空间的大小。

公式计算的是编码通过测量整个数据集特征的球填充个数,从而推导出整个数据集的特征所需要的比特数(根据数据集的SVD分解进行计算),其用来测量数据集的特征张开的空间大小。


直观地,由于我们能测量这些特征占据的高维空间的大小,因此只需让所有的特征占据的空间张的足够开,同时让同类的特征占据的空间缩得很小即可,这样后期也可以方便进行分类。

有了这样两个目标后,我们可以基于此构造优化目标:① 尽可能使所有的特征占据的空间膨胀的足够开② 尽可能使同类的特征空间收缩得足够小

注意,上式的 Z Z Z,是所有数据的特征,对所有原

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值