AI:线性代数之线性方程组

🌟从零吃透线性方程组:理论+实战,程序员必看!🌟

💡 引言

“为什么程序员要学线性方程组?”
线性方程组是计算机图形学、机器学习、游戏物理引擎的底层数学基石!
👉 举个栗子:游戏中人物运动的轨迹预测、图像处理中的像素修复、神经网络参数优化……背后都藏着线性方程组的魔法!
这篇文章带你从理论到实战,彻底打通任督二脉! 🚀


🧐 一、线性方程组?

你去商店买苹果和香蕉,苹果每个xxx元,香蕉每根yyy元,你买了333个苹果和222根香蕉,一共花了101010元,这就能写成一个方程:3x+2y=103x + 2y = 103x+2y=10 。像这样,方程里的未知数xxxyyy都是一次的(没有平方、立方或者更复杂的形式),就是线性方程

要是有好几个这样的线性方程放在一起,就组成了线性方程组。比如再加上一个条件,你第二次去买,买了222个苹果和444根香蕉,花了121212元,写成方程是2x+4y=122x + 4y = 122x+4y=12 。这两个方程{ 3x+2y=102x+4y=12\begin{cases}3x + 2y = 10 \\ 2x + 4y = 12\end{cases}{ 3x+2y=102x+4y=12 就构成了一个线性方程组。

我们学习线性方程组,主要目的是找到一组xxxyyy的值,能同时满足方程组里的每一个方程。就像刚刚这个例子,通过一定的方法可以算出x=2x = 2x=2y=2y = 2y=2 ,把x=2x = 2x=2y=2y = 2y=2代入这两个方程,等式都成立,这组值就是这个线性方程组的解。

求解线性方程组有几种常见方法:

  • 代入消元法:从一个方程里把一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个线性方程组的解。比如从第一个方程3x+2y=103x + 2y = 103x+2y=10可得y=10−3x2y = \frac{10 - 3x}{2}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值