Sklearn 机器学习 异常值检测 孤立深林可视化异常点

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖

在这里插入图片描述

本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】


在这里插入图片描述

Sklearn 机器学习 异常值检测:孤立森林可视化异常点实战

在实际机器学习项目中,数据集往往会包含异常点(Outliers),这些异常点可能是由于测量错误、数据录入问题,或者确实存在的罕见情况。
如果不处理,它们可能严重影响模型性能。

本篇文章将带你使用 Sklearn 的孤立森林(Isolation Forest)算法 进行异常点检测,并通过 可视化方式标记异常点,让检测结果一目了然。


🔍 一、孤立森林(Isolation Forest)简介

孤立森林是一种基于随机切分思想的异常检测算法,由多棵**孤立树(Isolation Trees)**组成。
它的基本原理是:

  • 异常点往往在特征空间中与其他样本相距较远,更容易被少量切分操作“孤立”出来
  • 每次随机选择一个特征,再在该特征的取值范围中随机选一个切分点
  • 重复这个过程,直到样本被完全隔离
  • 样本被隔离所需的切分次数越少,其越可能是异常点

优点:

  • 适用于高维数据
  • 对大规模数据集计算效率高
  • 不依赖数据分布假设

缺点:

  • 对参数敏感(尤其是 contamination)
  • 在异常比例极低时可能需要调参

⚙️ 二、孤立森林核心参数说明

参数名 说明
n_estimators 森林中的孤立树数量,数量越多模型越稳定,但计算时间增加
max_samples 每棵孤立树训练的样本数量,通常取 "auto" 或固定值
contamination 数据集中预估的异常比例(范围为 0 到 0.5,不包含 0.5),影响阈值计算
max_features 每棵树考虑的特征数,可用于加快训练
random_state 随机种子,保证实验可重复

💡 提示:如果异常比例未知,可以先取较小值(如 0.05),然后根据结果调整。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值