Sklearn 机器学习 邮件文本分类 计数器向量化文本

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖

在这里插入图片描述

本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】


在这里插入图片描述

Sklearn 机器学习 | 邮件文本分类:计数器向量化文本实战

在自然语言处理(NLP)任务中,邮件文本分类是一个非常常见的场景,例如 垃圾邮件检测主题分类 等。

本文将使用 Scikit-learn 提供的 CountVectorizer 来实现对邮件内容的计数向量化,并基于机器学习模型进行分类预测。

📌 一、项目背景与思路

邮件文本本质上是非结构化数据,计算机无法直接处理原始文本,因此需要将其转化为数值形式。计数向量化(Bag of Words,词袋模型)是一种常用的文本特征提取方法,它会统计每个词在文本中出现的次数,从而形成一个特征向量。

整体流程如下:

  1. 数据准备:获取带有类别标签的邮件数据集
  2. 文本向量化:使用 CountVectorizer 将邮件转化为数值矩阵
  3. 模型训练:使用朴素贝叶斯、逻辑回归等分类模型
  4. 模型评估:使用测试集进行准确率评估

📂 二、数据准备与预处理

为了演示,这里构造一个简单的邮件样本数据集,包括 垃圾邮件(spam)正常邮件(ham) 两类。

# 导入必要库
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report

# 构造示例数据
emails = [
    "Get ch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值