Sklearn 机器学习 房价预估 使用GBDT训练模型

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖

在这里插入图片描述

本博客的精华专栏:
【自动化测试】 【测试经验】 【人工智能】 【Python】


在这里插入图片描述

Sklearn 机器学习 房价预估 —— 使用 GBDT 训练模型

在机器学习应用场景中,房价预测 是一个经典问题。

本文将介绍如何使用 Sklearn 的 GBDT(Gradient Boosting Decision Tree, 梯度提升决策树) 来构建并训练模型,并与 线性回归、随机森林 进行对比,帮助读者更好地理解 GBDT 的优势。


📌 一、数据集准备

我们使用 波士顿房价数据集(Boston Housing Dataset)。这是一个经典的回归数据集,目标是预测房屋的中位数价格。

from sklearn.datasets import load_boston
import pandas as pd

# 加载数据集
boston = load_boston()
X = pd.DataFrame(boston.data, columns=boston.feature_names)
y = boston.target

print(X.head())
print(y[:10])

⚠️ 注意load_boston 在新版本的 sklearn 已被弃用。建议在生产环境中使用 加州房价数据集(fetch_california_housing) 作为替代。


📊 二、数据集拆分与预处理

在训练之前,我们需要拆分数据集,并进行标准化处理。

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 特征标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

为什么要标准化?

  • GBDT 本身对特征缩放 不敏感,但在与其他模型对比或混合时,标准化能提高稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas Kant

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值