Kafka:Docker Compose部署Kafka集群

本文详细指导了如何使用Docker Compose配置并部署Kafka集群,包括创建yaml文件、设置环境变量和端口映射,以及验证通过创建和管理Topic进行实战操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

创建目录用于存放Docker Compose部署Kafka集群的yaml文件:

mkdir -p /root/composefile/kafka/

写入该yaml文件:

vim /root/composefile/kafka/kafka.yaml 

内容如下:

version: '3'
networks:
  kafka-networks:
    driver: bridge
services:
  kafka1:
    image: wurstmeister/kafka
    container_name: kafka1
    ports:
      - "9092:9092"
    environment:
      KAFKA_ADVERTISED_HOST_NAME: 192.168.1.9
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://192.168.1.9:9092
      KAFKA_ZOOKEEPER_CONNECT: "192.168.1.9:9001,192.168.1.9:9002,192.168.1.9:9003"
      KAFKA_ADVERTISED_PORT: 9092
      KAFKA_BROKER_ID: 1
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
    networks:
      - kafka-networks
  kafka2:
    image: wurstmeister/kafka
    container_name: kafka2
    ports:
      - "9093:9092"
    environment:
      KAFKA_ADVERTISED_HOST_NAME: 192.168.1.9
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://192.168.1.9:9093
      KAFKA_ZOOKEEPER_CONNECT: "192.168.1.9:9001,192.168.1.9:9002,192.168.1.9:9003"
      KAFKA_ADVERTISED_PORT: 9093
      KAFKA_BROKER_ID: 2
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
    networks:
      - kafka-networks
  kafka3:
    image: wurstmeister/kafka
    container_name: kafka3
    ports:
      - "9094:9092"
    environment:
      KAFKA_ADVERTISED_HOST_NAME: 192.168.1.9
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://192.168.1.9:9094
      KAFKA_ZOOKEEPER_CONNECT: "192.168.1.9:9001,192.168.1.9:9002,192.168.1.9:9003"
      KAFKA_ADVERTISED_PORT: 9094
      KAFKA_BROKER_ID: 3
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
    networks:
      - kafka-networks

192.168.1.9是宿主机的IP地址,192.168.1.9:9001,192.168.1.9:9002,192.168.1.9:9003是已经部署好的ZooKeeper集群。

KAFKA_BROKER_ID用于区分集群中的节点。

部署Kafka集群:

docker compose -f /root/composefile/kafka/kafka.yaml up -d
[+] Running 8/8
 ⠿ kafka3 Pulled                                                                                                                                                                                           68.6s
   ⠿ 540db60ca938 Pull complete                                                                                                                                                                             6.2s
   ⠿ f0698009749d Pull complete                                                                                                                                                                            25.2s
   ⠿ d67ee08425e3 Pull complete                                                                                                                                                                            25.3s
   ⠿ 1a56bfced4ac Pull complete                                                                                                                                                                            62.7s
   ⠿ dccb9e5a402a Pull complete                                                                                                                                                                            62.8s
 ⠿ kafka1 Pulled                                                                                                                                                                                           68.7s
 ⠿ kafka2 Pulled                                                                                                                                                                                           68.6s
[+] Running 3/3
 ⠿ Container kafka3  Started                                                                                                                                                                                1.9s
 ⠿ Container kafka1  Started                                                                                                                                                                                1.9s
 ⠿ Container kafka2  Started                                                                                                                                                                                2.0s

查看容器状态。

docker compose ls

Kafka集群和ZooKeeper集群都在运行。

NAME                STATUS
kafka               running(3)
zookeeper           running(3)

Kafka集群的信息已经注册到了ZooKeeper集群。

[zk: 192.168.1.9:9001(CONNECTED) 0] ls /
[admin, brokers, cluster, config, consumers, controller, controller_epoch, feature, isr_change_notification, latest_producer_id_block, log_dir_event_notification, zookeeper]
[zk: 192.168.1.9:9001(CONNECTED) 1] ls -R /brokers 
/brokers
/brokers/ids
/brokers/seqid
/brokers/topics
/brokers/ids/1
/brokers/ids/2
/brokers/ids/3
[zk: 192.168.1.9:9001(CONNECTED) 2] get /brokers/ids/1
{"features":{},"listener_security_protocol_map":{"PLAINTEXT":"PLAINTEXT"},"endpoints":["PLAINTEXT://192.168.1.9:9092"],"jmx_port":-1,"port":9092,"host":"192.168.1.9","version":5,"timestamp":"1644751714958"}
[zk: 192.168.1.9:9001(CONNECTED) 3] get /brokers/ids/2
{"features":{},"listener_security_protocol_map":{"PLAINTEXT":"PLAINTEXT"},"endpoints":["PLAINTEXT://192.168.1.9:9093"],"jmx_port":-1,"port":9093,"host":"192.168.1.9","version":5,"timestamp":"1644751714877"}
[zk: 192.168.1.9:9001(CONNECTED) 4] get /brokers/ids/3
{"features":{},"listener_security_protocol_map":{"PLAINTEXT":"PLAINTEXT"},"endpoints":["PLAINTEXT://192.168.1.9:9094"],"jmx_port":-1,"port":9094,"host":"192.168.1.9","version":5,"timestamp":"1644751714887"}

用代码来测试一下,项目pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.kaven</groupId>
    <artifactId>kafka</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.0.0</version>
        </dependency>
    </dependencies>
</project>

测试代码:

package com.kaven.kafka.admin;

import org.apache.kafka.clients.admin.*;
import org.apache.kafka.common.KafkaFuture;

import java.util.Collections;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;

public class Admin {

    // 基于Kafka服务地址与请求超时时间来创建AdminClient实例
    private static final AdminClient adminClient = Admin.getAdminClient("192.168.1.9:9092", "40000");

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        Admin admin = new Admin();
        // 创建Topic,Topic名称为new-topic,分区数为2,复制因子为1
        admin.createTopic("new-topic", 2, (short) 1);
    }

    public static AdminClient getAdminClient(String address, String requestTimeoutMS) {
        Properties properties = new Properties();
        properties.setProperty(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, address);
        properties.setProperty(AdminClientConfig.REQUEST_TIMEOUT_MS_CONFIG, requestTimeoutMS);
        return AdminClient.create(properties);
    }

    public void createTopic(String name, int numPartitions, short replicationFactor) throws InterruptedException {
        CountDownLatch latch = new CountDownLatch(1);
        CreateTopicsResult topics = adminClient.createTopics(
                Collections.singleton(new NewTopic(name, numPartitions, replicationFactor))
        );
        Map<String, KafkaFuture<Void>> values = topics.values();
        values.forEach((name__, future) -> {
            future.whenComplete((a, throwable) -> {
                if(throwable != null) {
                    System.out.println(throwable.getMessage());
                }
                System.out.println(name__);
                latch.countDown();
            });
        });
        latch.await();
    }
}

输出:

new-topic

通过ZooKeeper集群可以查询到刚刚创建的Topic

[zk: 192.168.1.9:9001(CONNECTED) 9] ls -R /brokers/topics 
/brokers/topics
/brokers/topics/new-topic
/brokers/topics/new-topic/partitions
/brokers/topics/new-topic/partitions/0
/brokers/topics/new-topic/partitions/1
/brokers/topics/new-topic/partitions/0/state
/brokers/topics/new-topic/partitions/1/state

Docker Compose部署Kafka集群就介绍到这里,如果博主有说错的地方或者大家有不同的见解,欢迎大家评论补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ITKaven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值