大模型——利用RAG构建智能问答平台实战

利用RAG构建智能问答平台实战

目前公司的智能问答平台利用RAG技术构建,现给大家分享下通RAG技术构建智能问平台的具体流程和原理。

一、什么是RAG

RAG是检索增强生成技术(Retrieval-Augmented Generation),目前是构建智能问答的重要技术。RAG相比传统的检索可以可以减少幻觉;支持知识动态更新等优点,是现在企业和个人打造知识库的重要架构和技术。核心包括以下2点:

1、数据准备阶段

包括:数据收集及清洗——>文本解析及分割——>文本转化成向量——>数据入库

2、应用阶段

包括:用户提问——>问题解析——>数据检索(召回和重排)——>注入Prompt——>LLM生成答案

img

二、RAG构建智能问答系统详解

以下是RAG技术构建智能问答平台业务流程图

img

**
**

一)数据准备阶段

### 构建医疗领域的大规模RAG项目 #### 加载与切割文档 为了构建一个基于百万级医疗语料的检索增强生成(Retrieval-Augmented Generation, RAG)系统,首先需要处理大量的医学文献和其他形式的知识源。这涉及到数据获取、清洗以及预处理的工作流程。具体来说,在加载阶段会收集来自不同渠道的数据并将其转换成统一格式;而在切割环节,则要依据特定标准将这些资料分割成更易于管理的小片段[^1]。 ```python from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter loader = TextLoader('medical_data.txt') documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) ``` #### 接口引擎搭建 接下来就是建立用于索引创建和服务部署的基础架构部分。这里可以采用Elasticsearch作为搜索引擎来加速查询过程,并利用Faiss等向量数据库存储密集表示以便后续相似度计算。此外还需要开发API端点让用户提交请求并与后台逻辑交互[^3]。 ```bash docker run -d --name elasticsearch \ -p 9200:9200 \ -e "discovery.type=single-node" \ docker.elastic.co/elasticsearch/elasticsearch:7.10.0 ``` #### Prompt模板构建 针对具体的业务场景定制化提示词(Prompt),对于提高回复质量至关重要。特别是在医疗咨询这类高度专业化且敏感性强的应用场合下更是如此。因此应当充分考虑医生或患者可能提出的各类问题模式,并据此设计出既灵活又精确的回答框架。 ```json { "prompt": "根据给定的症状描述,请提供最有可能对应的疾病名称及其典型特征。", "input_variables": ["symptoms"] } ``` #### 正式运行RAG 最后一步便是集成以上组件形成完整的解决方案链路——从前端输入解析到最后输出呈现均需无缝衔接。当一切准备就绪之后就可以启动服务等待真实世界的考验了! 通过这样一个结构化的实施路径,不仅能够有效应对海量信息带来的挑战,同时也确保了所产出的内容始终遵循权威可靠的指导原则。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不二人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值