并行计算与性能优化
在量子化学仿真软件的二次开发中,并行计算和性能优化是提高计算效率和处理大规模问题的关键技术。并行计算通过利用多核处理器、多计算节点或分布式计算资源,可以显著减少计算时间。性能优化则通过优化算法、数据结构和代码实现,进一步提高计算效率。本节将详细介绍如何在ORCA中实施并行计算和性能优化,包括多线程、MPI(Message Passing Interface)并行和GPU加速等技术。
多线程并行
多线程并行是利用单个计算节点内的多个处理器核心来并行执行计算任务。ORCA支持OpenMP多线程并行,通过设置环境变量或在输入文件中指定多线程选项,可以轻松启用多线程计算。
启用多线程计算
-
设置环境变量:
在启动ORCA计算之前,可以通过设置环境变量来指定线程数。例如,使用
export
命令在Linux系统中设置线程数为4:export OMP_NUM_THREADS=4
-
在输入文件中指定多线程选项<