量子化学仿真软件:Psi4_(6).反应路径与过渡态搜索

反应路径与过渡态搜索

在量子化学仿真中,反应路径和过渡态搜索是理解化学反应机理的重要工具。通过这些方法,我们可以确定反应物转化为产物的具体路径,以及在这个过程中关键的过渡态。本节将详细介绍如何使用Psi4进行反应路径和过渡态搜索,并提供具体的代码示例和数据样例。

反应路径优化

反应路径优化的目标是找到从反应物到产物的最低能量路径(Minimum Energy Path, MEP)。这个路径上的最高点就是过渡态。Psi4提供了几种方法来进行反应路径优化,其中最常用的是内坐标驱动(Intrinsic Reaction Coordinate, IRC)方法和神经网络路径优化方法。

内坐标驱动(IRC)方法

IRC方法是一种沿着反应路径优化的方法,它通过逐步改变反应坐标来找到最低能量路径。IRC方法的优点是能够直接从过渡态开始,逐步向反应物和产物方向进行优化,从而确定反应路径。

代码示例

以下是一个使用IRC方法进行反应路径优化的例子。我们将使用水分子的异裂解反应作为示例。


import psi4

import numpy as np



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core',

                  'irc_stepsize': 0.1,

                  'irc_maxiter': 50})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的能量和几何结构

irc_data = psi4.get_irc_data()

energies = irc_data['energies']

geometries = irc_data['geometries']



# 打印IRC路径上的能量

print("IRC路径上的能量 (hartree):")

for i, energy in enumerate(energies):

    print(f"Step {i}: {energy}")



# 打印IRC路径上的几何结构

print("\nIRC路径上的几何结构 (Å):")

for i, geom in enumerate(geometries):

    print(f"Step {i}:")

    print(geom)

神经网络路径优化方法

神经网络路径优化方法是一种基于机器学习的方法,通过训练神经网络来预测反应路径。这种方法的优点是可以处理复杂的反应体系,但需要大量的初始数据来进行训练。

代码示例

以下是一个使用神经网络路径优化方法进行反应路径优化的例子。我们将使用苯的环化反应作为示例。


import psi4

import numpy as np

from psi4.driver.p4util.exceptions import ValidationError



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core',

                  'nn_stepsize': 0.1,

                  'nn_maxiter': 50})



# 定义分子

benzene = psi4.geometry("""

C 0 0 0

C 1.40 0 0

C 2.10 1.21 0

C 0.70 2.42 0

C -0.70 2.42 0

C -2.10 1.21 0

H 1.68 -0.85 0

H 2.45 0.36 0

H 2.45 2.06 0

H 0.42 3.27 0

H -0.42 3.27 0

H -2.45 2.06 0

H -2.45 0.36 0

H -1.68 -0.85 0

""")



# 进行神经网络路径优化

try:

    psi4 nn_path_optimization(benzene)

except ValidationError as e:

    print(f"错误: {e}")



# 获取神经网络路径优化的结果

nn_data = psi4.get_nn_data()

energies = nn_data['energies']

geometries = nn_data['geometries']



# 打印神经网络路径优化的能量

print("神经网络路径优化的能量 (hartree):")

for i, energy in enumerate(energies):

    print(f"Step {i}: {energy}")



# 打印神经网络路径优化的几何结构

print("\n神经网络路径优化的几何结构 (Å):")

for i, geom in enumerate(geometries):

    print(f"Step {i}:")

    print(geom)

过渡态搜索

过渡态搜索的目标是找到反应路径上的最高点,即过渡态。过渡态是反应过程中能量最高的一个点,其特征在于有一个虚频。Psi4提供了几种方法来进行过渡态搜索,包括使用内坐标驱动(IRC)方法反向搜索过渡态,以及使用过渡态优化方法(如Saddle Point Optimization)。

使用IRC方法反向搜索过渡态

IRC方法不仅可以用于反应路径优化,还可以用于反向搜索过渡态。通过从反应物或产物方向进行IRC计算,我们可以找到路径上的最高点,即过渡态。

代码示例

以下是一个使用IRC方法反向搜索过渡态的例子。我们将使用水分子的异裂解反应作为示例。


import psi4

import numpy as np



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core',

                  'irc_stepsize': 0.1,

                  'irc_maxiter': 50})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的能量和几何结构

irc_data = psi4.get_irc_data()

energies = irc_data['energies']

geometries = irc_data['geometries']



# 找到能量最高的点作为过渡态

max_energy_index = np.argmax(energies)

transition_state_energy = energies[max_energy_index]

transition_state_geometry = geometries[max_energy_index]



# 打印过渡态的能量和几何结构

print("过渡态的能量 (hartree):")

print(transition_state_energy)



print("\n过渡态的几何结构 (Å):")

print(transition_state_geometry)

使用过渡态优化方法

过渡态优化方法直接优化过渡态的几何结构。Psi4提供了几种过渡态优化方法,包括Saddle Point Optimization(SPO)方法。SPO方法通过逐步改变几何结构来找到虚频对应的过渡态。

代码示例

以下是一个使用Saddle Point Optimization(SPO)方法进行过渡态搜索的例子。我们将使用水分子的异裂解反应作为示例。


import psi4

import numpy as np



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core',

                  'spo_maxiter': 50})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行Saddle Point Optimization计算

try:

    psi4 saddle_point_optimization(h2o)

except ValidationError as e:

    print(f"错误: {e}")



# 获取过渡态的能量和几何结构

transition_state_energy = psi4.get_variable('SPO FINAL ENERGY')

transition_state_geometry = psi4.get_geometry()



# 打印过渡态的能量和几何结构

print("过渡态的能量 (hartree):")

print(transition_state_energy)



print("\n过渡态的几何结构 (Å):")

print(transition_state_geometry)

反应路径和过渡态的分析

在找到反应路径和过渡态之后,我们需要对这些结果进行分析,以理解反应机理。分析内容包括能量变化、几何结构变化、振动频率等。

能量变化分析

能量变化分析可以帮助我们理解反应的活化能和反应热。通过比较反应物、过渡态和产物的能量,可以计算出活化能和反应热。

代码示例

以下是一个进行能量变化分析的例子。我们将使用之前的水分子异裂解反应的IRC路径数据。


import psi4

import numpy as np



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core'})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的能量和几何结构

irc_data = psi4.get_irc_data()

energies = irc_data['energies']

geometries = irc_data['geometries']



# 找到能量最高的点作为过渡态

max_energy_index = np.argmax(energies)

transition_state_energy = energies[max_energy_index]



# 计算反应物和产物的能量

reactant_energy = energies[0]

product_energy = energies[-1]



# 计算活化能和反应热

activation_energy = transition_state_energy - reactant_energy

reaction_heat = product_energy - reactant_energy



# 打印能量变化

print(f"反应物能量 (hartree): {reactant_energy}")

print(f"过渡态能量 (hartree): {transition_state_energy}")

print(f"产物能量 (hartree): {product_energy}")

print(f"活化能 (hartree): {activation_energy}")

print(f"反应热 (hartree): {reaction_heat}")

几何结构变化分析

几何结构变化分析可以帮助我们理解反应过程中键长、键角和二面角的变化。通过比较反应物、过渡态和产物的几何结构,可以确定反应的关键步骤。

代码示例

以下是一个进行几何结构变化分析的例子。我们将使用之前的水分子异裂解反应的IRC路径数据。


import psi4

import numpy as np



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core'})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的几何结构

irc_data = psi4.get_irc_data()

geometries = irc_data['geometries']



# 定义键长和键角的计算函数

def calculate_bond_length(geom, atom1, atom2):

    coords1 = geom[atom1]

    coords2 = geom[atom2]

    return np.linalg.norm(coords1 - coords2)



def calculate_bond_angle(geom, atom1, atom2, atom3):

    coords1 = geom[atom1]

    coords2 = geom[atom2]

    coords3 = geom[atom3]

    v1 = coords1 - coords2

    v2 = coords3 - coords2

    angle = np.degrees(np.arccos(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))))

    return angle



# 计算关键几何参数的变化

bond_lengths = []

bond_angles = []



for i, geom in enumerate(geometries):

    bond_length = calculate_bond_length(geom, 0, 1)

    bond_angle = calculate_bond_angle(geom, 0, 1, 2)

    bond_lengths.append(bond_length)

    bond_angles.append(bond_angle)



# 打印键长和键角的变化

print("键长变化 (Å):")

for i, length in enumerate(bond_lengths):

    print(f"Step {i}: {length}")



print("\n键角变化 (degrees):")

for i, angle in enumerate(bond_angles):

    print(f"Step {i}: {angle}")

振动频率分析

振动频率分析可以帮助我们确认过渡态的特征。过渡态通常有一个虚频,通过振动频率分析可以确定这个虚频对应的振动模式。

代码示例

以下是一个进行振动频率分析的例子。我们将使用之前的水分子异裂解反应的过渡态数据。


import psi4

import numpy as np



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core'})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的能量和几何结构

irc_data = psi4.get_irc_data()

energies = irc_data['energies']

geometries = irc_data['geometries']



# 找到能量最高的点作为过渡态

max_energy_index = np.argmax(energies)

transition_state_geometry = geometries[max_energy_index]



# 进行振动频率分析

freqs, normal_modes = psi4.frequency(transition_state_geometry, dertype=2)



# 打印振动频率

print("过渡态的振动频率 (cm^-1):")

for i, freq in enumerate(freqs):

    print(f"Frequency {i}: {freq}")



# 打印虚频对应的振动模式

imaginary_freq_index = np.where(freqs < 0)[0][0]

imaginary_normal_mode = normal_modes[imaginary_freq_index]



print("\n虚频对应的振动模式 (Å):")

print(imaginary_normal_mode)

反应路径和过渡态的可视化

为了更好地理解反应路径和过渡态,我们可以通过可视化工具来显示几何结构的变化和能量的变化。Psi4可以生成几何结构和能量数据,这些数据可以输入到可视化工具中进行显示。

使用MolView进行可视化

MolView是一个在线的分子可视化工具,可以显示几何结构的变化。我们将生成IRC路径上的几何结构文件,并使用MolView进行可视化。

代码示例

以下是一个生成IRC路径上的几何结构文件并使用MolView进行可视化的例子。


import psi4

import numpy as np



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core',

                  'irc_stepsize': 0.1,

                  'irc_maxiter': 50})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的几何结构

irc_data = psi4.get_irc_data()

geometries = irc_data['geometries']



# 生成几何结构文件

with open('irc_path.xyz', 'w') as f:

    for i, geom in enumerate(geometries):

        f.write(f"{len(geom)}\n")

        f.write(f"Step {i}\n")

        for atom, coords in geom.items():

            f.write(f"{atom} {coords[0]} {coords[1]} {coords[2]}\n")



# 生成能量文件

with open('irc_energies.txt', 'w') as f:

    for i, energy in enumerate(irc_data['energies']):

        f.write(f"Step {i}: {energy} hartree\n")



# 提示用户使用MolView进行可视化

print("生成的IRC路径文件 (irc_path.xyz) 和能量文件 (irc_energies.txt) 已保存。")

print("请使用MolView或其他可视化工具进行查看。")

使用Matplotlib进行能量变化可视化

Matplotlib是一个强大的Python绘图库,可以用于绘制能量变化曲线。我们将使用IRC路径上的能量数据来生成能量变化曲线。

代码示例

以下是一个使用Matplotlib绘制IRC路径上能量变化曲线的例子。


import psi4

import numpy as np

import matplotlib.pyplot as plt



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core',

                  'irc_stepsize': 0.1,

                  'irc_maxiter': 50})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的能量

irc_data = psi4.get_irc_data()

energies = irc_data['energies']



# 绘制能量变化曲线

plt.figure(figsize=(10, 6))

plt.plot(energies, marker='o', linestyle='-', color='b')

plt.xlabel('Step')

plt.ylabel('Energy (hartree)')

plt.title('IRC Path Energy Changes')

plt.grid(True)

plt.show()

结合机器学习进行反应路径优化

结合机器学习方法可以提高反应路径优化的效率和准确性。通过训练机器学习模型来预测反应路径上的能量和几何结构,可以加快优化过程。在本节中,我们将使用简单的线性回归模型作为示例,预测反应路径上的能量。这个模型可以通过训练集数据进行训练,然后用于预测IRC路径上的能量。

使用机器学习模型

我们将使用简单的线性回归模型作为示例,预测反应路径上的能量。这个模型可以通过训练集数据进行训练,然后用于预测IRC路径上的能量。

代码示例

以下是一个使用机器学习模型进行反应路径优化的例子。我们将使用水分子的异裂解反应作为示例。


import psi4

import numpy as np

from sklearn.linear_model import LinearRegression



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core',

                  'irc_stepsize': 0.1,

                  'irc_maxiter': 50})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的能量和几何结构

irc_data = psi4.get_irc_data()

energies = irc_data['energies']

geometries = irc_data['geometries']



# 训练线性回归模型

X = np.arange(len(energies)).reshape(-1, 1)

y = np.array(energies).reshape(-1, 1)



model = LinearRegression()

model.fit(X, y)



# 预测能量

predicted_energies = model.predict(X)



# 打印预测的能量

print("预测的能量 (hartree):")

for i, energy in enumerate(predicted_energies):

    print(f"Step {i}: {energy[0]}")



# 绘制实际能量和预测能量的对比图

plt.figure(figsize=(10, 6))

plt.plot(energies, marker='o', linestyle='-', color='b', label='Actual Energy')

plt.plot(predicted_energies, marker='x', linestyle='-', color='r', label='Predicted Energy')

plt.xlabel('Step')

plt.ylabel('Energy (hartree)')

plt.title('IRC Path Energy Changes')

plt.legend()

plt.grid(True)

plt.show()

机器学习模型的选择和训练

在实际应用中,线性回归模型可能并不总是最佳选择。根据反应路径的复杂性和数据的特性,可以使用更复杂的机器学习模型,如神经网络、决策树等。训练数据的选择也非常重要,通常需要从多个初始结构和路径中获取数据。

代码示例

以下是一个使用神经网络模型进行反应路径优化的例子。我们将使用水分子的异裂解反应作为示例。


import psi4

import numpy as np

from sklearn.neural_network import MLPRegressor



# 设置计算参数

psi4.set_options({'basis': 'sto-3g',

                  'scf_type': 'pk',

                  'guess': 'core',

                  'irc_stepsize': 0.1,

                  'irc_maxiter': 50})



# 定义分子

h2o = psi4.geometry("""

O

H 1 1.0

H 1 1.0 2 104.5

""")



# 进行IRC计算

psi4 irc h2o



# 获取IRC路径上的能量和几何结构

irc_data = psi4.get_irc_data()

energies = irc_data['energies']

geometries = irc_data['geometries']



# 训练神经网络模型

X = np.arange(len(energies)).reshape(-1, 1)

y = np.array(energies).reshape(-1, 1)



model = MLPRegressor(hidden_layer_sizes=(10,), max_iter=1000)

model.fit(X, y)



# 预测能量

predicted_energies = model.predict(X)



# 打印预测的能量

print("预测的能量 (hartree):")

for i, energy in enumerate(predicted_energies):

    print(f"Step {i}: {energy[0]}")



# 绘制实际能量和预测能量的对比图

plt.figure(figsize=(10, 6))

plt.plot(energies, marker='o', linestyle='-', color='b', label='Actual Energy')

plt.plot(predicted_energies, marker='x', linestyle='-', color='r', label='Predicted Energy')

plt.xlabel('Step')

plt.ylabel('Energy (hartree)')

plt.title('IRC Path Energy Changes')

plt.legend()

plt.grid(True)

plt.show()

总结

通过Psi4进行反应路径和过渡态搜索,我们可以详细理解化学反应的机理。IRC方法和神经网络路径优化方法都是常用的反应路径优化工具,而过渡态搜索可以通过IRC方法反向搜索或直接使用Saddle Point Optimization方法。结合机器学习方法可以进一步提高优化的效率和准确性。最后,通过可视化工具和数据对比,我们可以更直观地理解反应路径上的能量变化和几何结构变化。

希望这些示例和方法能够帮助你更好地进行反应路径和过渡态的研究。如果你有任何问题或需要进一步的帮助,请随时联系Psi4社区或查阅相关文献。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值