数据处理和分析之分类算法:K近邻算法(KNN):K值的选择策略

数据处理和分析之分类算法:K近邻算法(KNN):K值的选择策略

在这里插入图片描述

数据处理和分析之分类算法:K近邻算法 (KNN):K值的选择策略

K近邻算法(KNN)简介

KNN算法的基本原理

K近邻算法(K-Nearest Neighbors, KNN)是一种基于实例的学习方法,用于分类和回归。在分类问题中,KNN算法的工作原理是:对于给定的测试样本,算法在训练数据集中找到与之距离最近的K个样本,然后根据这K个样本的类别来决定测试样本的类别。通常,类别由多数投票决定,即测试样本将被分类为K个最近邻样本中出现次数最多的类别。

算法步骤
  1. 计算距离:选择一个距离度量方法(如欧氏距离)来计算测试样本与训练数据集中每个样本的距离。
  2. 找到K个最近邻:根据计算出的距离,选择距离最近的K个训练样本。
  3. 类别决定:对这K个最近邻的类别进行统计,将出现次数最多的类别作为测试样本的预测类别。
距离度量<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值