数据处理和分析之分类算法:K近邻算法(KNN):K值的选择策略
数据处理和分析之分类算法:K近邻算法 (KNN):K值的选择策略
K近邻算法(KNN)简介
KNN算法的基本原理
K近邻算法(K-Nearest Neighbors, KNN)是一种基于实例的学习方法,用于分类和回归。在分类问题中,KNN算法的工作原理是:对于给定的测试样本,算法在训练数据集中找到与之距离最近的K个样本,然后根据这K个样本的类别来决定测试样本的类别。通常,类别由多数投票决定,即测试样本将被分类为K个最近邻样本中出现次数最多的类别。
算法步骤
- 计算距离:选择一个距离度量方法(如欧氏距离)来计算测试样本与训练数据集中每个样本的距离。
- 找到K个最近邻:根据计算出的距离,选择距离最近的K个训练样本。
- 类别决定:对这K个最近邻的类别进行统计,将出现次数最多的类别作为测试样本的预测类别。