- 博客(245)
- 收藏
- 关注
原创 calico:强大的网络策略 - 从NetworkPolicy到 GlobalNetworkPolicy
本文深入探讨了Calico网络策略的实现原理及其扩展功能。主要内容包括:1) Calico通过Felix组件将声明式策略转换为高效的iptables规则,利用ipset优化性能;2) 对比Kubernetes原生NetworkPolicy的默认拒绝机制;3) 重点介绍了Calico特有的增强功能,包括支持策略顺序(order)的NetworkPolicy、集群范围的GlobalNetworkPolicy,以及保护节点的HostEndpoint资源;4) 通过实战演示如何构建分层安全模型,先设置全局拒绝策略再
2025-07-30 11:16:49
523
原创 Calico:核心原理与 BGP 路由模式
Calico 核心原理与 BGP 路由模式摘要 Calico 通过节点上的 calico-node 组件实现高效的容器网络连接,该组件包含两个核心进程: Felix - 作为"规则执行官",负责从 Kubernetes API 获取网络策略并编程到内核中,管理路由、ACL 和网络接口 bird - 作为"路由信使",通过 BGP 协议实现节点间的路由信息交换 在纯 BGP 模式下,Calico 采用三层路由方案: 每个节点分配唯一的 Pod IP 地址段 节点间通过
2025-07-30 10:20:36
457
原创 高级分布式系统调试: 网络疑难杂症 - 追踪 DNS、丢包与 TLS
今天,我们深入了分布式系统调试中最具挑战性的领域之一——网络疑难杂症。我们学会了如何系统性地诊断DNS问题,如何追踪间歇性丢包,以及如何解密TLS 握手失败的谜团。
2025-07-28 09:24:08
858
原创 高级分布式系统调试:调试内存 - 容器化的挑战
容器化内存调试:挑战与实践 本文探讨了容器化环境中内存调试的独特挑战和解决方案。主要内容包括: OOMKilled现象:当容器内存超过Kubernetes设置的限制时,内核会强制终止进程,导致Pod重启。 容器内存认知偏差:应用程序可能误读宿主机内存而非容器实际分配的内存,导致内存规划错误。 语言特定解决方案: Java应用:建议使用现代JDK版本和容器感知参数 Go应用:推荐使用GOMEMLIMIT环境变量控制内存使用 诊断工具链: Prometheus监控宏观内存使用情况 Go pprof工具进行微观堆
2025-07-28 09:14:25
983
原创 高级分布式系统调试 :调试延迟 - “沉默的杀手”
本文探讨了分布式系统中延迟问题的调试方法。延迟作为"沉默的杀手",其特点在于隐蔽性强、影响用户体验且可能引发级联故障。文章提出两阶段诊断法:首先通过分布式追踪系统宏观定位慢速服务,再利用代码剖析工具深入分析具体原因。以Go语言的pprof工具为例,详细演示了如何采集CPU性能数据并生成火焰图来识别性能瓶颈。这套方法使SRE能够从系统层面到代码层面对延迟问题进行精准定位,为后续优化提供明确方向。文章最后预告将探讨内存问题的调试方法。
2025-07-26 13:00:12
590
原创 高级分布式系统调试:调试的科学与 USE 方法实战
摘要: 本文探讨了分布式系统调试的科学方法,重点介绍了USE(Utilization、Saturation、Errors)性能分析框架。作者强调从用户症状出发,通过观察→假设→测试→迭代的循环进行系统性排查,而非盲目检查指标。USE方法建议针对CPU、内存、网络、磁盘等核心资源,依次检查使用率、饱和度和错误率,并提供了Linux环境下的具体命令速查表。通过一个实战案例,展示了如何利用USE方法快速定位磁盘I/O瓶颈。文章指出高级调试依赖于方法论而非直觉,为后续探讨应用层延迟分析(如分布式追踪和性能剖析)奠定
2025-07-26 12:51:41
1002
原创 未来之路 - eBPF 与 Cilium 如何重塑网络
摘要: eBPF是一项革命性的内核技术,它允许安全地将沙箱化程序加载到内核中运行,通过事件钩子触发执行,同时经过严格验证确保安全性。Cilium是基于eBPF的云原生网络解决方案,它取代传统CNI和kube-proxy,提供高性能网络、基于身份的安全策略和深度API感知能力。通过Hubble工具,Cilium还能实现无与伦比的可观测性,可视化服务依赖关系和流量细节。实战演示了如何安装Cilium并利用Hubble观察网络流量及策略效果,展现了eBPF如何重塑云原生网络架构。
2025-07-25 10:17:15
846
原创 七层网络的瑞士军刀 - 服务网格 Istio 流量管理
告诉 Istio,这个服务有两个版本子集v1和v2。metadata:spec:subsets:- name: v1labels:- name: v2labels:今天,我们真正领略了服务网格作为“七层网络瑞士军刀”的强大威力。我们学习了 Istio 的核心流量管理资源Gateway和,并亲手完成了一次金丝雀发布,见证了它对流量无与伦比的精细控制能力。我们现在拥有的,是超越 Kubernetes 原生网络能力的、一个真正可编程的应用层网络。我们已经掌握了最复杂的流量管理。可观测性和安全性。
2025-07-25 10:05:06
1035
原创 服务发现的魔术 - DNS, Service, 与 Ingress 控制器
今天,我们为我们的“云原生城市”构建了高效的交通系统。我们通过Service 和 CoreDNS,解决了内部服务之间“如何找到彼此”的问题。接着,我们通过Ingress 和 Ingress Controller,建立了一个强大的、统一的“城门”,学会了如何管理从外部世界进入集群的7层流量。我们的应用现在不仅内部互联互通,也能够安全、高效地对外提供服务了。至此,一个功能完备的 Kubernetes 网络基础已经搭建完毕。
2025-07-23 08:20:48
779
原创 奠定基石 - Kubernetes 网络模型与 CNI 深度剖析
通过今天的原理剖析和动手实战,我们清晰地看到了两种 CNI 模式的差异。Overlay (如 Flannel): 简单、通用。当你需要一个“能用就行”的网络,并且不太关心极致的性能或复杂的网络策略时,它是一个很好的选择。Routed (如 Calico): 高性能、功能强大。当你追求网络性能,并且需要精细、高效的网络策略()支持时,它是事实上的标准。我们已经为云原生网络世界打下了坚实的“物理层”基础。接下来,我们将在这个基础之上,构建服务发现和访问的“上层建筑”。在下一篇中,我们将探讨。
2025-07-23 08:18:07
1020
原创 Kubernetes 网络策略 (NetworkPolicy) 深度剖析:从原理到实战
Kubernetes 网络策略(NetworkPolicy)深度解析与实践指南 本文深入探讨Kubernetes网络策略的核心原理与实战应用。默认情况下,Kubernetes集群采用完全开放的扁平网络模式,存在安全隐患。NetworkPolicy通过标签选择器机制实现网络微隔离,其核心特点是"声明式"配置,依赖于支持该功能的CNI插件(如Calico、Cilium)具体实现。 文章详细解析了NetworkPolicy的工作机制,包括默认拒绝原则、标签选择器匹配规则等关键概念,并通过三个典
2025-07-21 07:55:41
968
原创 自动化与安全 - 将 Terraform 集成到 CI/CD
今天,我们为整个 IaC 的实践旅程画上了完美的句号。我们把之前所有学到的知识——HCL 语法、模块化、远程状态管理——全部串联起来,并将其置于一个自动化、安全、且遵循 SRE 最佳实践的 CI/CD 流水线之中。
2025-07-21 07:46:42
1074
原创 状态管理与团队协作 - SRE 的核心关切
摘要:Terraform 状态管理与团队协作实践 本文深入探讨了 Terraform 状态管理的核心要点与团队协作解决方案。首先解析了 terraform.tfstate 文件的关键作用,包括资源映射、变更规划和依赖追踪。针对团队协作问题,提出远程状态存储方案(AWS S3)并详细演示配置过程,强调必须避免本地状态带来的冲突和安全风险。进一步介绍了利用 DynamoDB 实现状态锁定机制,防止多人同时操作导致的竞争条件。最后讨论了多环境管理的工作区模式与替代方案。这些实践为 Terraform 团队协作提供
2025-07-20 09:42:51
1009
原创 模块化构建 - 让你的 IaC 代码可复用
Terraform模块化实践指南 本文介绍了Terraform模块的概念与使用方法,包括: 模块定义:模块是包含相关.tf文件的独立目录,分为根模块和子模块 四大优势:组织性、可复用性、封装性、一致性与标准化 本地模块实践: 重构目录结构创建webserver子模块 定义输入变量、资源和输出 在根模块中调用并复用子模块 远程模块应用: 通过Terraform Registry使用社区VPC模块 用少量代码创建复杂网络基础设施 模块化是提升Terraform代码质量的关键,能有效管理系统复杂性,建议锁定模块版
2025-07-18 08:09:42
585
原创 深入 HCL - 变量、输出与数据源
摘要:本文介绍了HCL(HashiCorp配置语言)中变量、输出和数据源的核心概念。内容包括:1) 输入变量(Input Variables)的定义与使用,支持动态传入数值;2) 输出值(Output Values)的配置方法,用于获取资源属性;3) 数据源(Data Sources)的应用场景,如查询已存在的AWS资源。文中提供了详细的代码示例,包括variables.tf、outputs.tf和data.tf的配置方法,并解释了变量赋值的多种方式及其优先级。这些功能共同增强了Terraform配置的灵活
2025-07-18 08:03:02
733
原创 IaC 核心理念与 Terraform 的第一次接触
使用代码(通常是人类可读的配置文件)来定义和管理你的基础设施,并将其纳入版本控制系统(如 Git)。命令式 (Imperative): 你告诉系统 “如何做 (How)” 来达到目标状态。例如,编写一个 Shell 脚本:“第一步:创建一台 t2.micro 类型的虚拟机;第二步:为它创建一个安全组;第三步:将虚拟机关联到该安全组……这种方式逻辑直接,但难以维护和保证最终状态的一致性。声明式 (Declarative)
2025-07-16 11:38:47
953
原创 前端性能与可靠性工程:前端韧性工程 - 优雅降级与离线支持
今天,我们触及了前端可靠性的巅峰。我们不仅关注应用在理想状态下的表现,更学会了如何为它在“惊涛骇浪”(网络中断、后端故障)中构建一个坚固的“救生舱”。我们通过,将应用从一个必须依赖网络的脆弱网页,变成了一个具备基本离线工作能力的、真正健壮的应用程序。
2025-07-16 11:25:53
881
原创 前端性能与可靠性工程:真实用户监控 (RUM) 与前端可观测性
摘要 本文系统地介绍了前端可观测性的"三位一体"架构(指标、日志、追踪)及其实现方法。第一部分阐述了RUM(真实用户监控)的核心指标收集、错误监控的上下文捕获以及分布式追踪的全链路分析。第二部分以Sentry为例,详细演示了如何集成SDK实现性能监控、错误捕捉和会话回放功能。第三部分讲解了如何利用监控数据定义有意义的SLO并设置智能告警。最后从SRE角度探讨了可观测性数据在业务决策中的应用价值,并预告了后续将探讨的前端韧性工程内容。全文为构建完整的前端监控体系提供了实践性指导。
2025-07-14 10:22:57
557
原创 前端性能与可靠性工程系列: 渲染、缓存与关键路径优化
今天,我们从资源本身深入到了浏览器的渲染流程。我们剖析了关键渲染路径的每一步,学习了如何通过优化 CSS 和 JS 加载来为这条路径“扫清障碍”。我们还探讨了强大的多层缓存策略,它可以从根本上消除不必要的网络请求。这些知识让我们能够从更宏观、更具架构性的视角来思考和优化前端性能。到目前为止,我们讨论的性能度量和优化,大多还停留在“实验室”阶段。但我们如何知道,在真实世界中,那成千上万使用着不同设备、处于不同网络环境的用户,他们所体验到的性能究竟是怎样的?
2025-07-14 09:28:59
936
原创 前端性能与可靠性工程:资源优化 - 加载性能的“低垂果实”
今天,我们学习了一系列立竿见影的前端资源优化技巧。我们现在知道如何通过恰当的尺寸、格式、压缩和加载策略来优化图片,以及如何通过压缩、打包、分割等手段来优化 CSS 和 JavaScript。通过应用这些“低垂的果实”,我们通常能获得最显著的性能提升,尤其是在 LCP 和 FCP 指标上。然而,优化完资源本身,我们还可以更进一步。浏览器是如何发现、请求、解析并最终将这些资源组合成我们看到的像素的?这个过程的顺序和效率,同样对性能有至关重要的影响。
2025-07-13 10:07:10
957
原创 前端性能与可靠性工程:我们度量什么?核心 Web 指标与工具入门
本文介绍了前端性能优化的核心指标与工具。重点解析了Google定义的核心Web指标:LCP(衡量加载性能,良好标准≤2.5秒)、INP(衡量交互响应性,取代FID,良好标准≤200毫秒)和CLS(衡量视觉稳定性,良好标准≤0.1)。同时比较了实验室数据(如Lighthouse、WebPageTest)和现场数据(如CrUX、RUM工具)两种测量方式的优缺点。文章建议SRE团队应结合使用这两种方法,在CI/CD流程中设置性能预算,并通过RUM监控真实用户体验。最后提供了使用Lighthouse进行简单性能审计
2025-07-11 10:46:17
899
原创 k8s深度讲解:无限的扩展性 - CRD 与 Operator
今天,我们站在了 Kubernetes 这座技术巨塔的顶端,窥见了其设计的终极智慧。我们从etcd的数据一致性出发,见证了Scheduler和Controller的决策之舞,下沉到Kubelet的具体执行,探索了Service的网络魔法,最终,我们学会了如何通过CRD 和 Operator,成为这个生态的创造者。我们深刻地认识到,Kubernetes 不仅仅是一个“容器编排器”,它是一个通用的、声明式的、事件驱动的、可无限扩展的控制平面框架。
2025-07-11 10:19:11
1009
原创 k8s深度讲解:神奇的网络魔术师 - Service, Endpoints 与 kube-proxy
今天,我们揭开了 Kubernetes 网络魔法的神秘面纱。我们理解了Service作为一个稳定的抽象,是如何通过EndpointsController 动态地追踪一组健康的 Pod,并最终由运行在每个节点上的kube-proxy,将这个抽象的定义转化为内核中实实在在的iptables或IPVS规则,从而实现了健壮的服务发现和负载均衡。这种声明式、解耦的、分布式的网络管理方式,是 Kubernetes 强大能力的核心体现之一。至此,我们已经深入探索了 Kubernetes 所有内置的核心组件。
2025-07-09 09:50:34
879
原创 k8s深度讲解:辛勤的工作者 - Kubelet, 容器运行时与 CNI
本文深入解析了Kubernetes工作节点三大核心组件:Kubelet作为节点管家,负责Pod生命周期管理;容器运行时通过CRI接口实现容器创建;CNI插件为Pod配置网络。文章详细描述了Pod从调度到运行的完整流程:Scheduler分配节点,Kubelet监控任务,通过CRI创建容器,CNI配置网络,最终形成可访问的Pod。这种分层插件架构保证了Kubernetes的灵活性和扩展性,为后续服务发现和负载均衡机制奠定了基础。
2025-07-09 09:43:21
1082
原创 k8s深度讲解:智慧的决策者 - Scheduler 和 Controller Manager
K8s调度与控制器深度解析:集群决策的核心机制 摘要: Kubernetes调度系统由两大核心决策组件构成:kube-scheduler负责Pod的节点调度,采用两阶段算法(过滤淘汰+评分优选)为Pod选择最佳运行节点;kube-controller-manager则通过协调循环机制(观测-比较-行动)确保集群状态与期望一致,包含ReplicaSet、Deployment等专业控制器。二者协同工作实现声明式API的自动化管理:用户定义期望状态,调度器处理资源分配,控制器负责状态维护。这种设计赋予K8s强大的
2025-07-07 09:06:25
681
原创 k8s深度讲解----宏观架构与集群之脑 - API Server 和 etcd
本文将Kubernetes比作数据中心操作系统,重点剖析了其控制平面的核心组件API Server和etcd。API Server作为唯一入口,负责请求的三层处理:身份认证、权限授权和合规准入。etcd则是集群的分布式键值存储,采用Raft共识算法确保数据高可用和强一致性。文章详细描述了API Server如何验证请求并将合法数据存入etcd,以及etcd如何通过事件驱动机制将变更通知各组件。最后指出后续将探讨调度器和控制器管理器的功能,完成对Kubernetes"决策大脑"的完整解读。
2025-07-07 08:59:33
1348
原创 从实验到文化 - “混沌日”与持续混沌
今天,我们为混沌工程的探索画上了圆满的句号。我们从理解其科学的哲学理念出发,到亲手执行基础设施层和网络应用层的混沌实验,再到今天,我们学习了如何通过**“混沌日”和“持续混沌”**,将这种实践融入团队的文化和流程之中。我们现在不仅掌握了“如何做”混沌实验,更理解了“为何做”以及“如何规模化地做”。我们已经具备了将混沌工程这门高级 SRE 艺术在团队中落地和推广的能力。至此,我们的“混沌工程入门系列”正式结束。希望它能帮助您和您的团队,构建出真正经得起现实世界考验的、坚不可摧的系统。
2025-07-06 12:32:56
755
原创 深入混乱 - 模拟网络与应用层故障
本文介绍了如何利用Chaos Mesh进行网络和应用层故障模拟的实验。首先搭建包含Nginx服务端和curl客户端的测试环境,建立请求耗时的基线数据。然后通过NetworkChaos CRD精确注入200ms和1100ms的网络延迟,验证客户端在不同延迟下的表现:200ms时请求成功但耗时增加,1100ms时因超过curl的1秒超时设置而失败。实验展示了混沌工程的价值:验证应用代码的韧性、发现隐藏假设、定义科学SLO。文章还引申了模拟丢包的方法,强调混沌工程作为受控实验的科学性,而非简单的破坏性测试。
2025-07-06 12:27:09
750
原创 初试牛刀 - 使用 Chaos Mesh 进行第一次混沌实验
本文介绍了使用Chaos Mesh进行首次混沌实验的完整流程。首先安装Chaos Mesh并部署测试应用Nginx,然后设计实验验证Kubernetes在Pod被杀死后的自愈能力。通过Dashboard或YAML两种方式执行实验,观察系统自动恢复的过程。强调了SRE视角下的"混沌即代码"理念,将实验定义作为代码管理。整个实验验证了Kubernetes的基础设施层恢复能力,为后续更复杂的网络故障测试奠定了基础。
2025-07-04 09:56:55
838
原创 混沌工程核心理念 - 为何要主动制造“混乱”?
混沌工程:主动制造"混乱"的科学 混沌工程是一种通过在生产环境中注入可控故障来验证系统韧性的实验方法,核心目标是建立对复杂系统抵御真实故障的信心。与传统随机破坏不同,它遵循科学实验原则:提出关于系统稳定性的假设、控制实验影响范围(爆炸半径)、在生产环境逐步验证,并最终实现自动化持续测试。这种方法类似于"系统疫苗",通过模拟故障训练系统自我修复能力。混沌工程与SRE理念高度契合,能主动发现架构弱点,预防潜在故障。后续将介绍云原生工具Chaos Mesh的实际应用。
2025-07-04 09:47:08
1057
原创 铜墙铁壁 - 密钥管理的最佳实践
摘要:Kubernetes密钥管理最佳实践 Kubernetes原生Secret对象存在安全隐患,现代密钥管理系统应遵循集中化、强身份认证、动态密钥等核心原则。HashiCorp Vault是业界领先的开源密钥管理工具,通过存储后端、认证方法和密钥引擎等组件实现安全管控。推荐使用Vault Secrets Store CSI Driver与K8s集成,让Pod通过ServiceAccount动态获取短期有效的数据库凭证,并自动挂载为文件。这种方案实现了从静态密钥到动态密钥的安全飞跃,将凭证泄露的危害降至最低
2025-07-02 16:58:57
565
原创 洞若观火 - 运行时安全检测
Falco 的强大之处在于其灵活的规则引擎。它的规则是用简单的 YAML 格式定义的。= 0condition: 定义了触发规则的逻辑条件。这里表示“当一个新进程被创建 (),且它在一个容器内 (container),且这个进程是已知的 shell 进程之一 (),并且它连接到了一个终端 (proc.tty!= 0)”时,就匹配成功。你可以根据自己的业务场景,编写自定义规则来检测特定的、对你来说是异常的行为。今天,我们为我们的“云原生堡垒”部署了最警惕的“巡逻卫队”——运行时安全。
2025-07-02 16:54:07
641
原创 固若金汤 - Kubernetes 集群安全强化
一个用户即使只有创建 Pod 的权限,如果他能创建一个特权 Pod (privileged pod),他依然有可能逃逸到宿主机,从而控制整个节点。我们需要一种机制来定义什么样的 Pod 才是“安全”的、被允许运行的。这就是 Kubernetes 内置的Pod 安全标准 (Pod Security Standards - PSS)的作用(它替代了已被废弃的privileged(特权): 不受限制。允许已知的权限提升。只应该用于那些你完全信任的、系统级的核心组件。baseline(基线)
2025-06-30 08:10:34
677
原创 防患于未然 - 软件供应链安全
《防患于未然:软件供应链安全实践》探讨了如何在现代开发流程中构建自动化安全防线。文章提出三道关键防护:1)使用Dependabot等工具自动化扫描依赖漏洞;2)在CI中集成Trivy进行容器镜像扫描,阻止高危漏洞进入制品库;3)通过Sigstore/Cosign实现制品数字签名,确保来源可信。这些措施体现了"安全左移"理念,将防护前移至开发流程上游。文章强调自动化安全检查的必要性,同时提醒在安全与效率间保持平衡,主张平台团队应承担安全基础设施建设的责任,为开发者提供"默认安全&
2025-06-30 08:04:37
651
原创 预测性 SRE 与自动化修复
今天,我们一同探索了 AIOps 的前沿阵地。我们学会了如何使用预测模型来预见问题,并设计了安全的自动化工作流来修复问题。至此,我们的 AIOps 实践入门系列也画上了圆满的句号。我们完整地走过了这条从检测诊断到预测和修复的智能运维演进之路。我们认识到,AIOps 不是一个虚无缥缈的概念,而是一套可以实实在在帮助 SRE 构建更智能、更有韧性、甚至能自我修复的系统的强大工具集。这段旅程漫长而充满挑战,但它所指向的,正是 SRE 这一职业的未来。
2025-06-29 13:00:35
980
原创 关联分析与根因定位 - 连接“点”与“线”
今天,我们向着 AIOps 的更高层次迈出了一大步。我们不再满足于孤立地检测异常,而是学会了如何关联来自不同数据源的事件,并利用 LLM 强大的推理能力,来自动地诊断问题的可能根源。我们的 AIOps 系统已经从一个“警报器”进化为了一个“初级诊断医生”。我们现在能够快速地检测和诊断问题。那么,AIOps 的终极理想——在问题发生前就预测到它,并在发生后自动修复它——是否可能实现呢?预测性 SRE 与自动化修复。
2025-06-27 08:27:38
914
原创 日志智能 - 从海量文本中发现模式与异常
今天,我们深入了 AIOps 的第二个关键领域——日志智能。我们学会了如何使用 TF-IDF 和 DBSCAN 这一强大的组合,将原始的日志文件自动地整理成有意义的事件簇,并从中精确地分离出最值得关注的异常“噪音”。我们现在拥有了在海量日志中快速定位“为什么”的线索的能力。至此,我们已经可以分别在指标(Metrics)和日志(Logs)的世界里发现异常。但它们仍然是孤立的。一个真正的 SRE 高手,其价值在于能够将不同的信号关联起来。关联分析与根因定位。
2025-06-27 08:18:32
610
原创 AIOps 简介与实践初探 - 智能指标异常检测
今天,我们通过一个亲身实践,揭开了 AIOps 的神秘面纱。我们认识到它并非魔法,而是一套可以帮助我们更智能地理解系统的实用工具。我们成功地构建了一个能够超越静态阈值,发现时序数据中微妙异常的智能检测系统。这是我们在运维中引入“智能”的第一步。然而,指标数据(Metrics)通常只能告诉我们**“发生了什么”,但很难解释“为什么发生”。这个“为什么”,往往深埋于海量的日志(Logs)**之中。在下一篇中,我们将深入日志智能。
2025-06-25 08:33:27
1610
原创 安全壁垒 - K8s 的 RBAC、NetworkPolicy 与 SecurityContext 精要
K8s安全机制精要 Kubernetes安全体系包含三个核心组件: RBAC:精确控制API访问权限,通过角色(Role/ClusterRole)和绑定(RoleBinding/ClusterRoleBinding)实现最小权限分配 NetworkPolicy:定义Pod间网络隔离规则,依赖CNI插件实现,默认全通,启用后转为默认拒绝 SecurityContext:容器运行时安全配置,包括非root运行、权限降级等 最佳实践: 遵循最小权限原则 为应用创建专用ServiceAccount 定期审计权限配置
2025-06-25 08:22:03
948
原创 集群透视 - K8s 核心监控组件与日志管理方案
Kubernetes集群监控与日志管理是SRE工作的关键环节。监控体系分为四个层面:节点、Pod/容器、控制平面和API对象状态,依赖于核心组件metrics-server(资源指标聚合)、cAdvisor(容器指标采集)和kube-state-metrics(集群状态转换)。Prometheus+Grafana组合通过抓取多维度指标并提供可视化仪表盘,成为监控的事实标准。日志管理方面,采用节点级日志代理(如Fluentd)收集容器日志,配合Elasticsearch或Loki等后端实现集中存储与分析。完善
2025-06-23 08:09:41
561
提升问答效率的Deepseek优化提问指南与技巧
2025-04-01
2025最热AI大模型DeepSeek-R1网页端与API操作指南及资源推荐
2025-03-03
Deepseek 2025年高效应用秘籍:职场、学业和创作中的智能助手
2025-03-12
深度解读DeepSeek最强使用攻略:简明提问与三大对话模板
2025-03-10
DeepSeek小白使用技巧指南:让你轻松驾驭深度思考R1与人性化交互
2025-03-10
DeepSeek高阶提示词全面解析:助力职场、创作、电商等领域小白秒变专家
2025-03-10
清华大学DeepSeek助力普通人的高效工作、学习与生活应用指南
2025-02-25
DeepSeek赋能职场应用的技术实现及其多场景应用探讨 - 清华大学新媒沈阳团队
2025-02-25
解决Git克隆时遇到的HTTPS证书验证失败的问题
2025-02-12
Linux下使用grep搜索日志文件遇到Binary file警告的解决方法
2025-02-12
Kubernetes网络解决方案详解:Flannel的架构、配置与应用场景
2025-02-12
Kubernetes容器编排技术:kubectl debug命令详解与容器及节点故障排查
2025-02-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人