自然语言处理之命名实体识别:BERT:13.命名实体识别在信息抽取中的应用

自然语言处理之命名实体识别:BERT:13.命名实体识别在信息抽取中的应用

在这里插入图片描述

1. 命名实体识别简介

1.1 命名实体识别的基本概念

命名实体识别(Named Entity Recognition, NER)是自然语言处理(NLP)领域的一个重要任务,它旨在从文本中识别并分类出具有特定意义的实体,如人名、地名、组织机构名、时间、货币等。NER是信息抽取、问答系统、机器翻译等高级NLP应用的基础,通过准确识别文本中的实体,可以提高这些应用的性能和准确性。

实体类型

命名实体通常被分为以下几类:

  • 人名(Person):如“张三”、“李四”。
  • 地名(Location):如“北京”、“纽约”。
  • 组织机构名(Organization):如“谷歌”、“联合国”。
  • 时间(Time):如“2023年”、“
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值