自然语言处理之命名实体识别:BERT:13.命名实体识别在信息抽取中的应用
1. 命名实体识别简介
1.1 命名实体识别的基本概念
命名实体识别(Named Entity Recognition, NER)是自然语言处理(NLP)领域的一个重要任务,它旨在从文本中识别并分类出具有特定意义的实体,如人名、地名、组织机构名、时间、货币等。NER是信息抽取、问答系统、机器翻译等高级NLP应用的基础,通过准确识别文本中的实体,可以提高这些应用的性能和准确性。
实体类型
命名实体通常被分为以下几类:
- 人名(Person):如“张三”、“李四”。
- 地名(Location):如“北京”、“纽约”。
- 组织机构名(Organization):如“谷歌”、“联合国”。
- 时间(Time):如“2023年”、“