自然语言处理之情感分析:Long Short-Term Memory Networks (LSTM):文本预处理技术

自然语言处理之情感分析:Long Short-Term Memory Networks (LSTM):文本预处理技术

在这里插入图片描述

自然语言处理与情感分析基础

自然语言处理简介

自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,它研究如何让计算机理解、解释和生成人类语言。NLP技术广泛应用于机器翻译、情感分析、问答系统、文本摘要、语音识别等场景。在情感分析中,NLP帮助我们从文本中提取情感倾向,如正面、负面或中性。

情感分析的重要性与应用

情感分析(Sentiment Analysis)在商业、政治、社会研究等多个领域具有重要价值。它可以帮助企业了解消费者对产品或服务的反馈,政治家掌握公众舆论,以及研

### 如何复现 Attention-Based Bidirectional LSTM Networks for Relation Classification #### 准备工作 为了成功复现基于注意力机制的双向长短期记忆网络(Att-BLSTM)用于关系分类的任务,需准备必要的环境和数据集。确保安装了Python以及常用的机器学习库如TensorFlow或PyTorch等框架。 #### 数据预处理 首先加载并清理训练所需的数据集。这通常涉及去除无关字符、分词、转换大小写等工作。对于每个样本中的词语,利用预先训练好的词向量模型将其转化为固定长度的向量表示形式[^3]。 ```python import numpy as np from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences def preprocess_data(texts, labels=None): tokenizer = Tokenizer(num_words=MAX_NB_WORDS) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH) if labels is not None: label_encoder = LabelEncoder() encoded_labels = label_encoder.fit_transform(labels) return data, encoded_labels, word_index else: return data, word_index ``` #### 构建模型架构 构建包含五个主要组件的神经网络结构:输入层、嵌入层、双向LSTM层、注意层层及输出层。这里采用Keras API来定义这一复杂的深度学习模型[^4]。 ```python from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Embedding, Bidirectional, LSTM, Dense, Dropout, concatenate, Attention embedding_layer = Embedding(input_dim=vocab_size, output_dim=EMBEDDING_DIM, weights=[embedding_matrix], input_length=max_len, trainable=False) sequence_input = Input(shape=(max_len,), dtype='int32') embedded_sequences = embedding_layer(sequence_input) l_lstm = Bidirectional(LSTM(units=LSTM_UNITS, return_sequences=True))(embedded_sequences) attention_output = Attention()([l_lstm, l_lstm]) dense_1 = Dense(DENSE_UNITS, activation="relu")(attention_output) dropout_1 = Dropout(rate=DROPOUT_RATE)(dense_1) output = Dense(len(label_names), activation='softmax')(dropout_1) model = Model(inputs=sequence_input, outputs=output) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) ``` #### 模型训练与评估 完成上述准备工作之后就可以开始训练过程,在此期间可以设置早停策略防止过拟合现象发生;同时保存最佳性能参数以便后续测试阶段调用。最后通过验证集上的表现衡量整个系统的有效性[^2]。 ```python history = model.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_split=0.1, callbacks=[ EarlyStopping(monitor='val_loss', patience=PATIENCE), ModelCheckpoint(filepath=model_path, save_best_only=True)] ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值