自然语言处理之情感分析:RoBERTa模型架构详解

自然语言处理之情感分析:RoBERTa模型架构详解

在这里插入图片描述

自然语言处理之情感分析:RoBERTa模型架构详解

一、RoBERTa简介

1.1 RoBERTa的诞生背景

在自然语言处理(NLP)领域,预训练模型的出现极大地推动了各种NLP任务的性能提升。2018年,Google发布的BERT模型通过双向Transformer和大规模无监督预训练,刷新了多项NLP任务的记录。然而,BERT的训练策略和模型架构仍有改进空间。2019年,Facebook AI Research和Salesforce的研究团队提出了RoBERTa模型,旨在通过优化预训练策略和数据处理方式,进一步提升模型性能。

RoBERT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值