👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 8.1.2 近似最近邻(ANN)算法选型深度指南 1. ANN算法核心原理 1.1 主流算法对比矩阵 1.2 性能基准(100万128维向量) 2. Elasticsearch集成配置 2.1 向量索引模板 2.2 查询DSL模板 3. 算法参数调优 3.1 HNSW参数矩阵 3.2 IVF优化策略 4. 企业级应用案例 4.1 电商图像搜索 4.2 生物特征识别 5. 算法选型决策树 6. 未来演进方向 6.1 硬件加速方案 6.2 算法演进趋势 8.1.2 近似最近邻(ANN)算法选型深度指南 Elasticsearch向量搜索核心架构与ANN算法集成 近似最近邻(ANN)算法 在高维向量空间中高效近似搜索,解决传统暴力搜索(如余弦相似度计算)在大数据量下计算复杂度高、响应慢的问题,广泛应用于: 图像 / 视频检索(如以图搜图) 文本语义匹配(如推荐系统) 生物信息学(基因序列比对)