堆之最小堆、最大堆(java实现)

本文介绍了堆数据结构的概念,包括最大堆和最小堆的定义,并提供了它们在Java中的实现。最大堆确保父节点不小于子节点,而最小堆则确保父节点不大于子节点。文章通过图解辅助理解,并详细展示了最大堆和最小堆的API设计及代码实现,包括上浮和下沉操作。

定义:堆是树型的一对多的数据结构,使用数组实现

  • 对应完全二叉树
  • 每个节点大于等于或者小于等于它的子节点
二叉树: 每个非叶子节点最多有两个分支节点
满二叉树: 每个非叶子节点都有两个子节点
完全二叉树: 最后一层的最后一个节点的父节点不满足满二叉树之外,其它非叶子节点都满足满二叉树

堆分为最小堆和最大堆

  • 最大堆:是一个完全二叉树,父节点不小于子节点
  • 最小堆:是一个完全二叉树,父节点不大于子节点

堆的特性

  • 堆的前一半是非叶子节点,后一般是叶子节点

关键操作

上浮、下沉的本质就是父节点与子节点比较,完成最大堆(父节点不小于子节点)或者最小堆(父节点不大于子节点), 上浮和下沉的过程叫做堆化

  • 上浮
  • 下沉

图解

  • 当前节点父节点的索引为:当前节点的索引/2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值