【C++】TensorRT (__imp_createinferruntime_internal(...))))(...) returned nullptr

1. 问题

yolov8 导出的 tensorrt ,使用 C++ 进行推理,导致的问题

nvinfer1::createinferruntime(logger); (__imp_createinferruntime_internal(…))))(…) returned nullptr.

2. 解决

  • 检查是否有多个 tensorrt 环境,导出时的环境和运行的不一致,尤其是 trtexec
  • 检查导出的 engine 文件是否和环境一致,(我的这个问题,解决了)
<think>好的,我现在需要帮助用户解决他们在训练YOLACT模型时遇到的TypeError问题,具体是`TypeError: 'NoneType' object is not iterable`,出现在`log.log('val', val_info, elapsed=(end - start), epoch=epoch, iter=iteration)`这一行,尤其是`kwdargs.update(data)`处。用户提到`eval_script.evaluate`返回了None,这可能导致了这个问题。 首先,我需要回忆一下之前给出的解决方案。之前的回答中,我指出了问题通常是因为`data`变量为None,而`dict.update()`方法无法处理None值。解决方案包括添加保护逻辑检查data是否为None,并追溯生成data的上游代码,确保其正确返回字典而不是None。现在用户提到具体是`eval_script.evaluate`返回了None,这可能意味着验证过程中评估函数没有正确返回结果。 接下来,我需要结合用户提供的引用内容,但用户提到这些引用仅供参考,可能不是直接相关的。不过引用[1]提到除法取整和类型错误,引用[2]关于getattr的使用,可能与当前问题关联不大,所以可能不需要特别考虑这些引用,但用户希望尽可能参考之前的交流。 用户现在的问题更具体,涉及到`eval_script.evaluate`返回None,导致后续的`val_info`为None。需要检查评估函数的返回值,确认是否正确返回了指标字典。可能的原因包括评估过程中出现异常未处理,或者评估函数在特定条件下没有返回结果,例如当验证集为空或评估配置错误时。 可能的解决步骤包括: 1. 在调用`evaluate`后立即检查返回值是否为None,并处理这种情况。 2. 添加错误处理机制,确保在评估失败时记录错误并返回一个空字典或默认值,避免传递None。 3. 检查评估脚本的输入参数是否正确,特别是验证数据集的路径和配置,确保评估过程能够正常执行。 4. 查看评估脚本的日志或输出,确认是否有异常或错误信息,帮助定位问题根源。 5. 在训练脚本中添加调试语句,打印评估函数的返回值,确认其结构是否符合预期。 此外,用户可能需要在评估函数内部添加更多的日志记录,以确定在哪一步骤出现了问题,例如是否成功加载了模型权重,是否正确处理了输入数据,是否计算了指标等。如果评估过程中出现了未被捕获的异常,可能导致函数提前退出并返回None,因此需要检查评估函数的异常处理部分。 最后,确保所有函数的返回路径都有明确的返回值,避免在条件分支中遗漏return语句,尤其是在处理边界情况或异常时,应返回适当的默认值而不是None。</think>### YOLACT训练中`eval_script.evaluate`返回`None`的深度解决方案 --- #### 一、核心问题定位 错误`TypeError: 'NoneType' object is not iterable`的直接原因是`eval_script.evaluate()`返回了`None`,导致`val_info`变量为`None`,而后续`kwdargs.update(val_info)`尝试迭代`None`对象。需重点解决评估函数返回值异常问题。 --- #### 二、关键修复步骤 ##### 1. 验证评估函数的返回值 在`train.py`中找到调用`eval_script.evaluate()`的位置(通常在`compute_validation_map`函数中),添加返回值检查: ```python # 修改前(问题代码) val_info = eval_script.evaluate(yolact_net, dataset, train_mode=True) # 修改后(添加检查) val_info = eval_script.evaluate(yolact_net, dataset, train_mode=True) if val_info is None: val_info = {} # 返回空字典防止崩溃 print("[Warning] Evaluation returned None. Check validation data or model outputs.") ``` ##### 2. 修改评估脚本逻辑 进入`eval_script.py`(或对应评估模块),确保所有执行路径均有返回值: ```python def evaluate(net, dataset, train_mode=False): try: # 执行评估流程 metrics = calculate_map(net, dataset) return metrics # 必须保证此处返回字典 except Exception as e: print(f"Evaluation failed: {str(e)}") return {} # 异常时返回空字典而非None ``` ##### 3. 验证数据集和模型输出 评估返回`None`的常见根本原因: - **数据集加载失败**:检查`dataset`对象的`__len__`方法返回值是否为0 - **模型输出格式错误**:验证模型前向传播是否生成有效的检测结果 - **指标计算异常**:在`calculate_map`函数中添加调试断点 --- #### 三、针对性调试方法 ##### 1. 数据集完整性检查 在评估前添加数据验证: ```python # 在eval_script.evaluate()内部添加 assert len(dataset) > 0, "Validation dataset is empty" for image, target in dataset: assert image is not None, "Invalid image data" assert 'mask' in target, "Missing mask annotations" ``` ##### 2. 模型输出验证 在模型推理后添加张量检查: ```python # 在YOLACT的detect层后添加 def forward(self, x): preds = self.backbone(x) if preds['loc'].shape[1] == 0: # 无检测框时返回空字典 return {'boxes': [], 'scores': [], 'classes': []} return preds ``` ##### 3. 指标计算保护 修改mAP计算逻辑: ```python # 原calculate_map可能包含类似代码 def calculate_map(net, dataset): if not hasattr(net, 'detect'): # 模型未初始化检测头 return None # 此处会导致问题! # 修改为: if not hasattr(net, 'detect'): print("Model missing detection head") return {'mAP': 0.0} # 返回合法结构 ``` --- #### 四、预防性措施 | 措施类型 | 具体实现 | 作用 | |---------|---------|------| | **类型注解** | `def evaluate(...) -> dict:` | 强制返回字典类型 | | **单元测试** | 模拟空数据集/异常输入测试 | 验证函数鲁棒性 | | **日志增强** | 记录评估过程的中间结果 | 快速定位失败步骤 | --- #### 五、延伸问题排查 若上述方法仍未解决,需检查: 1. **CUDA内存溢出**:在评估前添加`torch.cuda.empty_cache()` 2. **多线程冲突**:尝试设置`torch.set_num_threads(1)` 3. **版本兼容性**:确认PyTorch与YOLACT代码版本匹配 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值