《Data Algorithm》读书笔记之九 —— 使用MapReduce实现推荐引擎

本文介绍如何使用MapReduce实现推荐引擎,通过分析用户购买行为,为用户推荐最常一起购买的商品,提升用户体验和销售效率。文章详细解释了Stripes设计模式在解决商品共现问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Data Algorithm》读书笔记之九 — 使用MapReduce实现推荐引擎

帮助用户查找信息
减少搜索和导航时间
提高用户满意度

购买过该商品的顾客还购买了哪些商品?( CWBTIAB)

可以通过之前的代码来实现这个内容
top10
购物篮分析
共同好友 等等

输入
每个销售记录包含一个 user_id, bought_item 。只要显示一个商品, 电商就会推荐购买过这个商品的用户最常购买的其它几件商品。
<user_id, bought_item>

输出:
键值对形式。 键是商品【用户正在浏览的商品】,值是一个列表【包含购买过这个商品的顾客最常购买的5件商品】
需要两次迭代实现推荐商品的功能:
step 1:生成同一个用户购买的所有商品的列表。
step 2:解决列表商品的共现问题。 使用到了 Stripes(条纹)设计模式

Stripes设计模式
主要思想:将 键值对分组为一个关联数组。

如下所示:有个mapper 发出的键值对如下[使用传统方法]
(k,k1) 3
(k,k2) 2
(k,k3) 4
(k,k4) 6
(z,z1) 7
(z,z2) 8
(z,z3) 5

但是如果使用 Stripes 方法,得到的输出则是:
(k,{(k1,3),(k2, 2),(k3, 4),(k4,6)})
(z, {(z1, 7),(z2,8),(z3, 5)})

step 2中:采用 Stripes方法,映射器会完成大部分工作,聚集数据,然后把数据传递到组合器和归约器。

经常一起购买的商品

同购物篮分析。

推荐好友

共同好友

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值