Java8 Stream 学习

本文详细介绍了Java 8 Stream的创建方法,包括从列表、数组、文件和字符串处理,以及流的中间操作如筛选、映射、排序,终止操作如匹配、聚合、规约和收集。涵盖了实用示例和自定义Comparator的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Java8 Stream

一,流的常用创建方法

1 使用Collection下的 stream() 和 parallelStream() 方法(最为常用)

List<String> list = new ArrayList<>();
Stream<String> stream = list.stream();  //顺序流
Stream<String> stringStream = list.parallelStream(); //并行流

2 使用Arrays 中的 stream() 方法,将数组转成流

Integer[] nums = new Integer[]{10,2,3,5};
Stream<Integer> Integerstream = Arrays.stream(nums);

3 使用Stream中的静态方法:of()、iterate()、generate()

Stream<Integer> TestStream = Stream.of(1,2,3,4);
//iterate()、generate()方法可以创建无限流,可以通过limit()方法来限制数量。
Stream<Integer> TestStream2 = Stream.iterate(0,x->x+2);
Stream<Integer> TestStream3 = Stream.generate(()-> new Random().nextInt(10));
Stream<Integer> TestStream4 = Stream.iterate(0,x->x+2).limit(10);

4 使用 BufferedReader.lines() 方法,将每行内容转成流

BufferedReader reader = new BufferedReader(new FileReader("F:\\test_stream.txt"));
Stream<String> lineStream = reader.lines();
//上面可以写成一行
Stream<String> lineStream2 = new BufferedReader(new FileReader("F:\\test_stream.txt")).lines();

5 使用 Pattern.splitAsStream() 方法,将字符串分隔成流

Pattern pattern = Pattern.compile(",");
Stream<String> stringStream2 = pattern.splitAsStream("a,b,c,d");

二, 流的中间操作

1 筛选与切片

filter:过滤流中的某些元素
limit(n):获取n个元素,限制获取元素的个数
skip(n):跳过n元素,配合limit(n)可实现分页
distinct:通过流中元素的 hashCode() 和 equals() 去除重复元素
Stream<Integer> stream = Stream.of(6,6,6,12,22,12,213,111,7,9,10);
Stream<Integer> streamFilter = stream.filter(item -> item > 10) // 12 22 12 213 111
        .distinct() //12 22 213 111
        .skip(2) //213 111
        .limit(1);//213
streamFilter.forEach(System.out::println);

2 映射

List<String> list = Arrays.asList("String","f,g,h");
Stream<String> stringStream = list.stream().map(s -> s.replaceAll(",", ""));//String fgh
//flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
Stream<String> stringStream2 = list.stream().flatMap(s -> {
    String[] split = s.split(",");
    Stream<String> testStream = Arrays.stream(split);
    return testStream;
});//String f g h
stringStream2.forEach(System.out::println);

		String[] words = new String[]{"Hello","World"};
        List<String[]> a = Arrays.stream(words)
                .map(word -> word.split(""))
                .distinct()
                .collect(toList());
        a.forEach(System.out::print);
//代码输出为:[Ljava.lang.String;@12edcd21[Ljava.lang.String;@34c45dca (返回一个包含两个String[]的list)


 		String[] words = new String[]{"Hello","World"};
        List<String> a = Arrays.stream(words)
            	.map(word -> word.split(""))
                .flatMap(Arrays::stream)
                .distinct()
                .collect(toList());
        a.forEach(System.out::print);//HeloWrd

3 排序

List<String> list = Arrays.asList("tt","er","Ad");
list.stream().sorted().forEach(System.out::println);//Ad er tt
//这里String类已经实现了Comparable接口
      	Person p1 = new Person("zhangsan",26);
        Person p2 = new Person("zhangsan",22);
        Person p3 = new Person("wangwu",23);
        List<Person> list = Arrays.asList(p1,p2,p3);
//        //自定义Comparator排序器 自定义排序:先按姓名升序,姓名相同则按年龄升序
        list.stream().sorted((o1,o2)->{
            if(o1.getName().equals(o2.getName())){
                return o1.getAge()-o2.getAge();
            }else {
                return o1.getName().compareTo(o2.getName());
            }
        }).forEach(System.out::println);

4 消费

peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值。

        Person p1 = new Person("zhangsan",26);
        Person p2 = new Person("lisi",22);
        Person p3 = new Person("wangwu",23);
        List<Person> list = Arrays.asList(p1,p2,p3);
        list.stream().map(item->{
            item.setAge(100);
            return item;
        }).forEach(System.out::println);

Person p1 = new Person("zhangsan",26);
Person p2 = new Person("lisi",22);
Person p3 = new Person("wangwu",23);
List<Person> list = Arrays.asList(p1,p2,p3);
list.stream().peek(item->item.setAge(100)).forEach(System.out::println);

三,流的终止操作

1 匹配、聚合操作

allMatch:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false
noneMatch:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false
anyMatch:接收一个 Predicate 函数,只要流中有一个元素满足该断言则返回true,否则返回false
findFirst:返回流中第一个元素
findAny:返回流中的任意元素
count:返回流中元素的总个数
max:返回流中元素最大值
min:返回流中元素最小值
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);  

boolean allMatch = list.stream().allMatch(e -> e > 10); //false
boolean noneMatch = list.stream().noneMatch(e -> e > 10); //true
boolean anyMatch = list.stream().anyMatch(e -> e > 4); //true 

Integer findFirst = list.stream().findFirst().get(); //1
Integer findAny = list.stream().findAny().get(); //1 

long count = list.stream().count(); //5
Integer max = list.stream().max(Integer::compareTo).get(); //5
Integer min = list.stream().min(Integer::compareTo).get(); //1 

2 规约操作

Stream<Integer> s = Stream.of(1, 2, 3, 4, 5, 6);
Integer sum = s.reduce((a, b) -> a + b).get();
System.out.println(sum);//21

Stream<String> s = Stream.of("test", "t1", "t2", "teeeee", "aaaa", "taaa");
System.out.println(s.reduce("[value]", (s1, s2) -> s1.concat(s2)));//[value]testt1t2teeeeeaaaataaa

        Stream<String> s1 = Stream.of("aa", "ab", "c", "ad");
        s1.reduce(new ArrayList<String>(), 
                (r, t) -> {if (t.contains("a")) r.add(t);  return r;},
                (r1, r2) -> r1)
                .stream().forEach(System.out::println);//aa ab ad

3 收集操作

collect:接收一个Collector实例,将流中元素收集成另外一个数据结构。

Collector<T, A, R> 是一个接口,有以下5个抽象方法:

Supplier < A>supplier():创建一个结果容器A
BiConsumer<A, T> accumulator():消费型接口,第一个参数为容器A,第二个参数为流中元素T。
BinaryOperator< A> combiner():函数接口,该参数的作用跟上一个方法(reduce)中的combiner参数一样,将并行流中各 个子进程的运行结果(accumulator函数操作后的容器A)进行合并。
Function<A, R> finisher():函数式接口,参数为:容器A,返回类型为:collect方法最终想要的结果R。
Set characteristics():返回一个不可变的Set集合,用来表明该Collector的特征。有以下三个特征:
CONCURRENT:表示此收集器支持并发。
UNORDERED:表示该收集操作不会保留流中元素原有的顺序。
IDENTITY_FINISH:表示finisher参数只是标识而已,可忽略。
Person p1 = new Person("zhangsan",26);
Person p2 = new Person("lisi",22);
Person p3 = new Person("wangwu",23);
List<Person> list = Arrays.asList(p1,p2,p3);
//装成list
List<Integer> ageList = list.stream().map(Person::getAge).collect(Collectors.toList());//[26,22,22]
//转成set
Set<Integer> ageSet = list.stream().map(Person::getAge).collect(Collectors.toSet());//[26,22]

//转成map,注:key不能相同,否则报错
Map<String, Integer> studentMap = list.stream().collect(Collectors.toMap(Person::getName, Person::getAge)); 
// {zhangsan=26, lisi=22, wangwu=22}

//字符串分隔符连接
String joinName = list.stream().map(Person::getName).collect(Collectors.joining(",", "(", ")")); 
// (zhangsan,lisi,wangwu)

//聚合操作
//1.总数
Long count = list.stream().collect(Collectors.counting()); // 3
//2.最大年龄 (最小的minBy同理)
Integer maxAge = list.stream().map(Person::getAge).collect(Collectors.maxBy(Integer::compare)).get(); // 26
//3.所有人的年龄求和
Integer sumAge = list.stream().collect(Collectors.summingInt(Person::getAge)); // 70
//4.平均年龄
Double averageAge = list.stream().collect(Collectors.averagingDouble(Person::getAge)); // 23.333333333333332
// 带上以上所有方法
DoubleSummaryStatistics statistics = list.stream().collect(Collectors.summarizingDouble(Person::getAge));
System.out.println("count:" + statistics.getCount() + ",max:" + statistics.getMax() + ",sum:" + statistics.getSum() + ",average:" + statistics.getAverage());
        
//分组 按年龄分组
Map<Integer, List<Person>> ageMap = list.stream().collect(Collectors.groupingBy(Person::getAge));
//分区
//分成两部分,一部分大于10岁,一部分小于等于10岁
Map<Boolean, List<Person>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10));
//规约
Integer allAge = list.stream().map(Person::getAge).collect(Collectors.reducing(Integer::sum)).get(); //40 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丿乐灬学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值