java链接spark,并提交数据

SparkConf conf = new SparkConf().setAppName("SparkExtractData").setMaster(sparkConfig.getMasterUrl())
					.set("spark.executor.memory", sparkConfig.getExecutorMemory()).set("spark.driver.host", sparkConfig.getDriverHost()) // 指定driver的hosts-name
					.set("spark.driver.port", sparkConfig.getDriverPort()) // 指定driver的服务端口
					.set("spark.cores.max", sparkConfig.getMaxCores()).set("spark.executor.cores", sparkConfig.getExecutorCores())
					.set("spark.sql.parquet.writeLegacyFormat", "true");

//			SparkSession spark = SparkSession.builder().config(conf).getOrCreate();
			JavaSparkContext javaSparkContext = new JavaSparkContext(conf);
			SparkContext sparkContext = JavaSparkContext.toSparkContext(javaSparkContext);
			SQLContext spark = SQLContext.getOrCreate(sparkContext);
			Properties conp = new Properties();
			conp.setProperty("user", druidConfig.getUsername());
			conp.setProperty("password", druidConfig.getPassword());
			conp.setProperty("driver", "oracle.jdbc.driver.OracleDriver");

			String[] table = tablename.split(",");
			String[] path = filepath.split(",");
			for (int i =0; i< table.length; i++ ) {
				if (StringUtil.isNotEmpty(table[i]) && StringUtil.isNotEmpty(path[i]) ) {
					DataFrame jdbcDF = spark.read().jdbc(druidConfig.getDbUrl(), table[i].toUpperCase(), conp);
					List<Column> colList = getColumns(table[i]);
					Column[] cols = colList.toArray(new Column[colList.size()]);
					DataFrame m = jdbcDF.select(cols);

					m.show();
					m.printSchema();
					System.out.println("开始写入数据。。。。。");
					try {
						m.write().mode("overwrite").parquet(sparkConfig.getHdfs() + sparkConfig.getHiveDb() + "/" + path[i]);
					}catch (Exception e){
						e.printStackTrace();
					}

				}
			}

			String ct = "58377173";
			String sql_str = "(select a.*, ROWNUM rownum__rn from TD_AD_DATA_CHARGE_DETAIL a) b";
			DataFrame m = spark.read().format("jdbc").option("driver", "oracle.jdbc.driver.OracleDriver").option("url", druidConfig.getDbUrl())
					.option("user", druidConfig.getUsername()).option("password", druidConfig.getPassword()).option("dbtable", sql_str)
					.option("fetchsize", "100000").option("partitionColumn", "rownum__rn").option("lowerBound", "0").option("upperBound", ct)
					.option("numPartitions", "10").load().drop("rownum__rn");
			m.show();
			m.printSchema();
			m.repartition(100).write().mode("overwrite").parquet(sparkConfig.getHdfs() + sparkConfig.getHiveDb() + "/charge");

			sparkContext.stop();

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值