分治——总结

‧ 分治算法是一种常见的算法设计策略,包括分(划分)和治(合并)两个阶段,通常基于递归实现。

‧ 判断是否是分治算法问题的依据包括:问题能否被分解、子问题是否独立、子问题是否可以被合并。

‧ 归并排序是分治策略的典型应用,其递归地将数组划分为等长的两个子数组,直到只剩一个元素时开始逐层合并,从而完成排序。

‧ 引入分治策略往往可以带来算法效率的提升。一方面,分治策略减少了操作数量;另一方面,分治后有利于系统的并行优化。

‧ 分治既可以解决许多算法问题,也广泛应用于数据结构与算法设计中,处处可见其身影。

‧ 相较于暴力搜索,自适应搜索效率更高。时间复杂度为𝑂(log𝑛)的搜索算法通常都是基于分治策略实 现的。

‧ 二分查找是分治策略的另一个典型应用,它不包含将子问题的解进行合并的步骤。我们可以通过递归分治实现二分查找。

‧ 在构建二叉树问题中,构建树(原问题)可以被划分为构建左子树和右子树(子问题),其可以通过划分前序遍历和中序遍历的索引区间来实现。

‧ 在汉诺塔问题中,一个规模为𝑛的问题可以被划分为两个规模为𝑛−1的子问题和一个规模为1的子 问题。按顺序解决这三个子问题后,原问题随之得到解决。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穿梭的编织者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值