Baseline:AI比赛里的“家常菜”有多香?(Datawhale AI 夏令营)

目录

聊聊Baseline:AI比赛里的“家常菜”有多重要?

Baseline是啥?就像做菜的基础配方

Baseline有啥用?不只是试金石

在科大讯飞AI大赛里,Baseline有多重要?

简单VS复杂:Baseline的哲学思考

半小时 跑通Baseline!

Step1:报名赛事(点击跳转)

Step2:启动魔搭Notebook!(点击跳转)

Step3:半小时运行一站式 baseline!

Step4:提交文件,拿下第一个分数!(点击即可跳转官网进行提交)

进阶训练

知识点概述

什么是文本编码(Text Encoding)?

什么是文本分类(Text Classification)?

什么是文本聚类(Text Clustering)?

如何在本项目中使用大模型(Large Language Model)解题?

最后,Baseline只是“基础”吗?


聊聊Baseline:AI比赛里的“家常菜”有多重要?

你有没有这种经历?兴冲冲报名个AI比赛,觉得自己能搞出个惊艳全场的模型,结果熬夜调了一堆花里胡哨的参数,分数却被主办方给的Baseline稳稳碾压。我记得几年前第一次参加机器学习比赛,信心满满地觉得自己能上排行榜,结果跑出来的成绩连Baseline的边都摸不着。那一刻,我感觉自己像个刚学做菜的小白,费尽心思整了个“创意大餐”,结果还不如我妈随手炒的家常菜香。这,就是Baseline的魅力——简单、直接,却能让你甘拜下风。今天就来聊聊,Baseline到底是个啥?它在AI比赛里,尤其像科大讯飞AI大赛(大模型方向)里,到底有多重要?

Baseline是啥?就像做菜的基础配方

说白了,Baseline就是比赛主办方给你的一套“起跑线”模型。在机器学习里,它通常是个简单但能跑通的解决方案,帮你快速上手任务。比如,它可能是最基础的线性回归、决策树,或者一个没多少层的神经网络。用生活化的比喻来说,Baseline就像你做红烧肉时,奶奶教你的“油热了放肉、加点酱油和糖”的基本配方。不花哨,但能让你吃上一口像样的饭。

我第一次接触Baseline时,还觉得它就是个“玩具模型”,跑跑就扔了。结果发现,主办方给的Baseline往往藏着对任务的深刻理解,简直是个“宝藏”。它不只是个技术工具,更像个老司机,带你先熟悉赛道,告诉你这个任务大概长啥样。

Baseline有啥用?不只是试金石

Baseline的作用,简单来说,就是帮你少走弯路,少踩坑。具体点,它有这么几个“神通”:

  • 试金石:拿到一个乱七八糟的数据集,你咋知道从哪儿下手?Baseline就像个现成的答案,告诉你“这个任务起码能做到这样”。你可以用它来验证自己的想法,比如“我加了个特征,效果是不是比Baseline好?”或者“我的模型是不是比Baseline更靠谱?”。跑个Baseline,立马知道自己站哪儿了。

  • 心理安慰剂:AI比赛的压力有多大,你懂的。排行榜上全是牛人,数据集复杂得让人头皮发麻。Baseline就像个好哥们儿,拍拍你肩膀说:“别慌,先试试我这套简单的,起码能跑起来。”我见过不少新手,拿到题目直接懵,但跑了个Baseline,分数70分,信心就回来了——“原来我也能搞定,接下来再优化吧!”这种从零到一的踏实感,多少复杂模型都给不了。

  • 偷懒神器:别小看Baseline,比赛里时间紧,Baseline能帮你快速定位问题,少干无用功。比如,Baseline的代码里可能藏着数据预处理的“套路”,或者模型结构的“巧思”。你顺着它的思路优化,往往事半功倍。

但我得说,Baseline也有点“阴险”。它太容易让人满足了,跑个不错的分数,你就觉得自己已经很牛,结果忘了去探索更深的可能性。反过来,它也可能是个陷阱——你一心想着打败Baseline,调了一堆复杂模型,最后发现绕了个大圈,还是回到了简单方法的路子上。

在科大讯飞AI大赛里,Baseline有多重要?

说到科大讯飞的AI大赛(大模型技术方向),Baseline的角色就更有意思了。这类比赛通常聚焦大模型的应用,比如自然语言处理、语音识别,或者多模态任务。数据量大,任务复杂,Baseline就成了你的“导航仪”。以2023年的讯飞AI开发者大赛为例(2025年的具体细节我没法直接看到,但逻辑差不多),主办方通常会给一个基于他们开源框架的预训练模型,比如某个经典的Transformer结构。这个Baseline不只是让你跑个分数,它还藏着主办方的“私货”——他们对任务的理解、数据的特性,甚至评判标准的偏好。

我有个朋友去年参加讯飞的语音转文本任务,拿到Baseline后发现它在数据预处理上特别注重噪声过滤。他灵机一动,把自己的模型也往这个方向优化,最后拿了个前十。反过来,我也见过有人一上来就追求“最新论文里的SOTA模型”,调了半个月,效果还不如Baseline稳。你说气人不气人?这就是Baseline的另一个隐藏作用:它提醒你,简单的方法有时候比复杂的更靠谱。

更别忘了,科大讯飞的比赛评判可不只看分数。模型的稳定性、推理速度、资源消耗这些“务实”的指标,往往都很重要。Baseline通常是这些指标的标杆,主办方给你的Baseline,基本就是他们心目中“合格”的标准。你要是连Baseline都跑不过,那可得好好反思了。

简单VS复杂:Baseline的哲学思考

聊到这儿,我突然有点跑题的冲动,想说说Baseline背后的哲学。你有没有想过,为什么我们总觉得复杂模型就一定比简单的强?是不是被那些花哨的论文标题洗脑了?AI的世界里,大家都在追更深的网络、更大的参数,但有时候,一个朴素的Baseline就能让你看清问题的本质。

我有个习惯,每次参加比赛都会先把Baseline跑透,逼自己从简单的方法里榨出点新东西。比如,调整一下特征工程,或者换个损失函数,有时候效果比堆模型强多了。这让我想起做菜:你可以加一堆奇奇怪怪的调料,但最打动人的,往往还是那碗最简单的家常菜。Baseline就是AI比赛里的“家常菜”,不花哨,但总能让人觉得踏实。

半小时 跑通Baseline!

Step1:报名赛事(点击跳转)

链接:2025 iFLYTEK AI开发者大赛-讯飞开放平台

按照官网指示报名比赛即可

Step2:启动魔搭Notebook!(点击跳转)

链接:ModelScope 魔搭社区

新用户需要先注册 & 绑定阿里云账号

进入环境时,可能需要登录阿里云账号,支付宝扫码登录即可

选择【方式一:CPU】、启动!

查看Notebook

Step3:半小时运行一站式 baseline!

下载baseline文件 (大约需要2分钟)

在终端输入如下命令,回车运行!

git lfs installgit clone https://www.modelscope.cn/datasets/Datawhale/AISumerCamp_video_comments_insights_baseline.git

PS:如果没有看到文件夹的话,可点击左上角的🔄按钮刷新

打开文件,一键运行!

(大约需要10分钟)等待运行完成,下载 submit.zip 文件!

Step4:提交文件,拿下第一个分数!(点击即可跳转官网进行提交)

链接:2025 iFLYTEK AI开发者大赛-讯飞开放平台

点击【提交结果】,上传submit.zip即可

这是我跑的分数

进阶训练

在当下电商直播爆发式增长的数字化浪潮中,短视频平台积累了海量的带货视频及用户互动数据。

这些数据不仅仅是消费者对商品体验的直接反馈,更蕴含着驱动商业决策的深层价值

带货视频评论用户洞察的核心逻辑,在于对视频内容评论数据的联合深度挖掘。

  • 通过智能识别视频中推广的核心商品,并结合评论区用户的情感表达与观点聚合,

  • 企业能够精准捕捉消费者对商品的 真实态度 需求痛点

  • 这种分析方式不仅能揭示用户对商品功能、价格、服务等多维度的评价,

  • 还能通过情感倾向聚类,构建消费者偏好画像,从而为 选品策略优化网红合作评估 提供有力的数据支撑。

该压缩包内必须包含一个名为 submit 的文件夹,并且该文件夹内必须包含两个 CSV 文件: submit_videos.csvsubmit_comments.csv

文件字段要求
submit_videos.csvvideo_id[标识]:需要预测的视频唯一标识product_name:识别结果-相关产品名
submit_comments.csv情感分类任务的结果+ 聚类提炼的主题词结果video_id[标识]:需要预测的视频唯一标识comment_id[标识]:需要预测的评论唯一标识sentiment_category分类结果:关于商品的情感倾向分类数值含义:1-正面,2-负面,3-正负都包含,4-中性,5-不相关。user_scenario分类结果:是否与用户场景有关,0表示否,1表示是user_question分类结果:是否与用户疑问有关,0表示否,1表示是user_suggestion分类结果:是否与用户建议有关,0表示否,1表示是positive_cluster_theme聚类结果:按正面倾向聚类的类簇主题词negative_cluster_theme聚类结果:按负面倾向聚类的类簇主题词scenario_cluster_theme聚类结果:按用户场景聚类的类簇主题词question_cluster_theme聚类结果:按用户疑问聚类的类簇主题词suggestion_cluster_theme聚类结果:按用户建议聚类的类簇主题词
  • 带货视频内容文本信息origin_videos_data.csv的数据格式

序号变量名称变量格式解释
1video_idstring视频id
2video_descstring视频描述
3video_tagsstring视频标签
4product_namestring推广商品名称

注:product_name需根据提供的视频信息进行提取,并从匹配到商品列表[Xfaiyx Smart Translator, Xfaiyx Smart Recorder]中的一项。


  • 评论区文本信息origin_comments_data.csv的数据格式

序号变量名称变量格式解释
1video_idstring视频id
2comment_idstring评论id
3comment_textstring评论文本
4sentiment_categoryint关于商品的情感倾向分类
5user_scenarioint是否与用户场景有关,0表示否,1表示是
6user_questionint是否与用户疑问有关,0表示否,1表示是
7user_suggestionint是否与用户建议有关,0表示否,1表示是
8positive_cluster_themestring按正面倾向聚类的类簇主题词
9negative_cluster_themestring按负面倾向聚类的类簇主题词
10scenario_cluster_themestring按用户场景聚类的类簇主题词
11question_cluster_themestring按用户疑问聚类的类簇主题词
12suggestion_cluster_themestring按用户建议聚类的类簇主题词

注:

a. 需进行情感分析的字段包括sentiment_categoryuser_scenariouser_questionuser_suggestion。训练集中部分数据已提供标注,测试集需自行预测。其中字段sentiment_category情感倾向分类的数值含义见下表:

分类值12345
含义正面负面正负都包含中性不相关

b. 需进行聚类的字段包括:

  • positive_cluster_theme:基于训练集和测试集中正面倾向(sentiment_category=1 或 sentiment_category=3)的评论进行聚类并提炼主题词,聚类数范围为 5~8。

  • negative_cluster_theme:基于训练集和测试集中负面倾向(sentiment_category=2 或 sentiment_category=3)的评论进行聚类并提炼主题词,聚类数范围为 5~8。

  • scenario_cluster_theme:基于训练集和测试集中用户场景相关评论(user_scenario=1)进行聚类并提炼主题词,聚类数范围为 5~8。

  • question_cluster_theme:基于训练集和测试集中用户疑问相关评论(user_question=1)进行聚类并提炼主题词,聚类数范围为 5~8。

  • suggestion_cluster_theme:基于训练集和测试集中用户建议相关评论(user_suggestion=1)进行聚类并提炼主题词,聚类数范围为 5~8。

注意,聚类样本包含训练集和测试集的全部满足上述条件的评论样本。

然后我们可以通过 经验/资料查阅肉眼观测/代码 等手段,对 赛事提供的数据 有大致的理解和把握

可以看到,视频包含多国语言,且存在空缺值。

知识点概述

分类是一种有监督学习任务。 这意味着在进行分类之前,我们已经拥有带有 明确标签 的训练数据。模型的任务是学习如何将新的、未见过的数据点(例如,一段评论或一个视频描述)分配到这些预定义的类别中的一个。

聚类是一种无监督学习任务。 这意味着在进行聚类时,我们 没有预先定义的标签 或类别信息。模型的任务是根据数据点之间的相似性,自动将它们分组到不同的“簇”(cluster)中,使得同一个簇内的数据点彼此相似,而不同簇之间的数据点差异较大。

什么是文本编码(Text Encoding)?

文本编码 是将人类可读的文本数据转换为机器可理解的数值表示的过程。这是所有文本分析任务的基础。

  • 独热编码(One-Hot Encoding): 将每个词表示为一个稀疏向量,向量中只有一个位置为1,其他位置为0。适用于词汇量较小的场景,但会产生高维稀疏向量,且无法捕捉词语间的语义关系。

  • 词嵌入(Word Embeddings): 将词语映射到低维连续向量空间,相似的词在向量空间中距离也相近。这是目前主流的文本编码方式。

    • 静态词向量 例如Word2Vec、GloVe,它们为每个词生成一个固定的向量表示。

    • 动态词向量/上下文词嵌入: 例如BERT、GPT等大模型,它们能根据词在句子中的上下文动态生成词向量,更好地捕捉多义词的含义。本次比赛中, 星火文本向量化模型 就属于此类。

什么是文本分类(Text Classification)?

文本分类 是根据文本内容将其自动归类到预定义类别的任务。在本次挑战赛中,情感分析就是一种多维度的文本分类任务。

  • 情感分析Sentiment Analysis): 识别文本所表达的情感倾向,包括正面、负面、中性等。本次比赛需要对评论进行 多维度情感分析 ,如情感倾向、用户场景、用户疑问和用户建议。

    • 基于规则的方法: 预定义情感词典和规则来判断情感。

    • 基于机器学习的方法: 使用朴素贝叶斯、支持向量机(SVM)等模型进行分类。

    • 基于深度学习的方法: 使用循环神经网络(RNN)、卷积神经网络(CNN)、Transformer等模型,尤其适用于处理复杂语义。

什么是文本聚类(Text Clustering)?

文本聚类 是根据文本内容的相似性,将文本自动分组,而无需预先定义类别。本次挑战赛要求按商品对指定维度的评论进行聚类,并提炼类簇总结词。

  • 聚类算法

    • K-Means: 经典聚类算法,需要预设聚类数量K。

    • 层次聚类(Hierarchical Clustering): 构建一个树状结构(谱系图),可以直观地展示聚类过程。

    • DBSCAN 基于密度的聚类算法,能够发现任意形状的簇,并且不需要预设聚类数量。

  • 聚类评估指标:

    • 轮廓系数(Silhouette Coefficient):

    • 衡量聚类结果的紧密性和分离度。值越接近1表示聚类效果越好,越接近-1表示聚类效果越差。

如何在本项目中使用大模型(Large Language Model)解题?

  • 零样本/少样本学习: 大模型在未见过或只见过少量样本的情况下也能完成任务,这在标注数据有限的场景下优势明显。

  • 微调 :在特定数据集上对预训练大模型进行进一步训练,使其更好地适应特定任务。

  • API调用: 大模型通常通过API接口提供服务,参赛者需要了解如何通过API发送请求、接收响应,并进行相应的开发集成。

最后,Baseline只是“基础”吗?

说到底,Baseline不只是个技术工具,它还让我思考一个问题:我们对AI的理解到底有多深?Baseline真的是“基础”吗?还是我们还没能从简单的方法里挖掘出更多可能性?AI比赛不只是比谁的分数高,更是在比谁能更聪明地偷懒,对吧?

下次你参加比赛,拿到Baseline,别急着扔,仔细琢磨琢磨,说不定它能带你飞。或者,你觉得Baseline是不是还有啥别的“隐藏技能”?欢迎留言,咱们一起聊聊!


声明:本文基于个人经验和对AI比赛的观察,力求用接地气的语言聊技术,欢迎在CSDN社区讨论!如果你有啥想补充的,或者想让我再调整下文章的风格(比如更活泼点、加点技术细节),随时告诉我,我来给你再打磨!

评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lethehong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值